Reading and Writing OpenEXR Image Files with
the limimf Library

Last Update: Oct 7, 2013
Industrial Light & Magic

Document Purpose and Audience

This document shows how to write C++ code that reads and writes OpenEXR 2.0 image files.

The text assumes that the reader is familiar with OpenEXR terms like “channel”, “attribute”, “data
window” or “deep data”. For an explanation of those terms see the Technical Introduction to OpenEXR
document.

The OpenEXR source distribution contains a subdirectory, IlmImfExamples, with most of the code
examples below. A Makefile is also provided, so that the examples can easily be compiled and run.

A description of the file structure and format is provided in OpenEXR File Layout.

Table of Contents

Document PUrpose and AUIENCE.ccveieriieieiieieiieieetceie ettt ettt ste et steesbestaesseetaesseessesseessesseessesseenes 1
Scan Line Based and Tiled OpenEXR fIleS........cooiiiiriiiiiieieiiee et 3
Multi-Part and Deep Data (NEW 10 2.0).....ceeiuiiiiiiiiiiieeieieeee sttt r et sse e sseeseesreesaesaeesaseesnneeesnns 3
Using the RGBA-only Interface for Scan Line Based Files.........coocooviiiiniiiiiiiieeeeeeeeeeeee e 4
Writing an RGBA ImMage File........oooiiiiiiiie e e 4
Writing a Cropped RGBA TMage........coouiiuiiiiieeeee ettt sae e 5
Storing CuSTOM ATIIDULES.eeuiiieieieiteete ettt ettt sttt e et s bt et e s bt e beeseesmbeeebteeenbeeeneeens 6
Reading an RGBA Image File........co.oouiiiiiiiiiiiiiiiinnces ettt ettt 7
Reading an RGBA Image File in ChUNKS..........cccoiiiiiiiiieeee et e 8
Reading CuStOm ATTTDULES.c.ceteiiiiirieinerteeteste ettt ettt ettt sttt st et sae e sare e s 8
Luminance/Chroma and Gray-Scale IMages...........cccevieieiiiienieeeeeesieee sttt e sneee e 9
Using the General Interface for Scan Line Based Files..........cccovieiiiieiirieniieieeeeee e 10
Writing an IMage File........coooiiiioieee ettt sttt sttt b et e st e e snneeenneean 10
Writing @ Cropped IMAZE........cccveriiiieiiiieieeiest ettt ettt e b saesae st e seesaesseessesseensenseenseessensesseenns 11
Reading an IMage File........ccooiiiiiiiiiiiiie ettt s st e 12
Interleaving Image Channels in the Frame Buffer............ccooviieiiiieiinieieceee e 14
Which Channels are in @ FIIe?........cccoiiiiiiiiiiiccete ettt s 14
LY TS ..ttt ettt ettt et sttt et ettt et et e et e e s h b e et e e s ht e et e e bae et e e ahaeea bt enteeateenbaeenbeebeeenbeenteeeentes 15
Tiles, Levels and LeVel MOGES.coooviiieeiieceee et eee et e e e e e e e eeaneeeennaeeeaeeeeeeennns 16
Using the RGBA-only Interface for Tiled Files.........coccuirieiirieiiiieieieeie ettt eevae s 17
Writing a Tiled RGBA Image File with One Resolution Level..........cccocvivinininininenienienienieeee, 17
Writing a Tiled RGBA Image File with Mipmap Levels........ccocceviiiiiiiiiiiieiecieieceeieeee e 18
Writing a Tiled RGBA Image File with Ripmap Levels.........ccooieviiiiiriiiieieiieieceiceeeieeee e 20
Reading a Tiled RGBA ITmage File.........cooiiiiiiiiiiiiiiieee et 21
Using the General Interface for Tiled Files........coviiiiiiiiiiriiiieieciciectee et 21
Writing a Tiled IMage File.........cooiiiiiii et ettt et 21
Reading a Tiled IMAGE FIle.......c.ccuiiiiiieiieiicieie ettt ettt sb et b e eaeesbeeaaesaeessesaeesnseeenes 22
Deep Data Files (INEW 111 2.0)....ciiuiiiiiieie ittt ettt ettt e e st st esae et esbeeste s bt enteeneeesmseeenneeennes 23
Writing a Deep Scan Line File........cooiiiiiiiiiiiie et 23
Reading a Deep Scan Line File........ooiiiiiiiiiiiee ettt 25
Writing @ Deep Tiled FAle........couiiiiiiiee ettt st e ens 26
Reading @ Deep Tiled File.......c.ooiiiiiiiieeeeecee ettt ettt e et e e e e neeesneeeenns 28

0T T LSRR 29

Library Thread-Safety.......coccveriiiiiiiieieciicieete ettt ettt ettt et st e b e te e b e ete e b e esaesseensesseessesseessessseens 29
MUIITRTEAAEA I/ ...ttt ettt b et st b e bbbt a e e et e e e 29
Multithreaded 1/0, Multithreaded Application Programi...........ccccceceevvieieriieieieeieneeiecieeiee e evee e 30
LOW-LEVEL IOttt et b bbbt b e bt ettt et e et e st e et eabeembeenee 30
Custom Low-Level FIle I/O........oooiiiiiie ettt st st 30
MemOTY-MappPed /Occviiiiiicieieeece ettt ettt et sb e e ra e s te e b e s teesbesta e b e ete e b e esaesbeeseeesreeetreens 32
IMISCEILANEOUS. ...ttt ettt s e et e e bt e e e bt e st e bt e s e bt ene e e bt eateeae et e saeeneeemeesmteeeneeesmneeennes 35
Is this an OPENEXR FIlE7......ccueciiiiieiiiiiciieieeie ettt ettt te b e eteebeeraesseesaesaeesaesssessesseessens 35
IS this File COmMPLELE?........eiiiiieieiiete ettt ettt sttt et e bt et e e s e steemeesaeemeesseeneenneas 35
PIOVIEW TIMAEES. ..ottt ettt ettt e bt et e bt e b e bt es e bt e et e eb e et e e bt entesaeesebeeenneees 36
ENVITONIMENE IMAPS. ..ottt ettt e et e e ese et e e et e seeemeesseeneesseentesseenseeseenseeneesnneeans 38

Scan Line Based and Tiled OpenEXR files

In an OpenEXR file, pixel data can be stored either as scan lines or as tiles. Files that store pixels as tiles
can also store multi-resolution images. For each of the two storage formats (scan line or tile-based), the
IImImf library supports two reading and writing interfaces:

1. The first, fully general, interface allows access to arbitrary channels, and supports many different
in-memory pixel data layouts.

2. The second interface is easier to use, but limits access to 16-bit (HALF) RGBA (red, green, blue,
alpha) channels, and provides fewer options for laying out pixels in memory.

The interfaces for reading and writing OpenEXR files are implemented in the following eight C++ classes:

tiles scan lines scan lines and tiles
arbitrary channels TiledInputFile InputFile
TiledOutputFile OutputFile
R(H%AOHB’ TiledRgbalInputFile RgbalnputFile

TiledRgbaOutputFile RgbaOutputFile

The classes for reading scan line based images (InputFile and RgbaInputFile) can also be used to read
tiled image files. This way, programs that do not need support for tiled or multi-resolution images can
always use the rather straightforward scan line interfaces, without worrying about complications related to
tiling and multiple resolutions. When a multi-resolution file is read via a scan line interface, only the
highest-resolution version of the image is accessible.

Multi-Part and Deep Data (New in 2.0)

The procedure for writing multi-part and deep data files is similar to writing scan line and tile. Though
there is no simplified interface, such as the RGBA-only interface.

This table describes the significant differences between writing single-part scan line and tile files and
writing multi-part and deep data files.

Feature scan line and tile Multi-part and deep data

Channel names Some channel names |Channel name “sample count” is reserved for a pixel
may be reserved | are reserved in sample count slice in frame buffer.

tice, but were . .
practice, but wer Note: The name “sample count” (all lowercase) is subject
never formally

defined. to change.

Multiple parts Single-part format is | Multi-part files support multiple independent parts. This
intended for storing a |allows storing multiple views in the same file for stereo
single multichannel | images, storing multiple resolutions in different parts. It is
image possible to include one or more scan line, tile, deep scan
line or deep tile format images within a multi-part file.

Custom data formats can also be used to store additional
parts, but this is outside the scope of this document.

Backwards- The new formats share the same abstract low-level IO as OpenEXR 1.7. It is
compatible low- | therefore possible to use the same libraries to implement low level IO to read both
level io available | formats.

Using the RGBA-only Interface for Scan Line Based
Files

Writing an RGBA Image File
Writing a simple RGBA image file is fairly straightforward:

void
writeRgbal (const char fileNamel],
const Rgba *pixels,

int width,
int height)
{
RgbaOutputFile file (fileName, width, height, WRITE RGBA); // 1
file.setFrameBuffer (pixels, 1, width); // 2
file.writePixels (height); // 3

}

Construction of an RgbaOutputFile object, in line 1, creates an OpenEXR header, sets the header's
attributes, opens the file with the specified name, and stores the header in the file. The header's display
window and data window are both set to (0, 0) - (width-1, height-1). The channel list contains
four channels, R, G, B, and A, of type HALF.

Line 2 specifies how the pixel data are laid out in memory. In our example, the pixels pointer is assumed
to point to the beginning of an array of width*height pixels. The pixels are represented as Rgba structs,
which are defined like this:

struct Rgba
{

half r; // red

half g; // green

half b; // blue

half a; // alpha (opacity)

}i

The elements of our array are arranged so that the pixels of each scan line are contiguous in memory.
The setFrameBuffer () function takes three arguments, base, xStride, and ystride. To find the
address of pixel (x,y), the RgbaOutputFile object computes

base + x * xStride + y * yStride.

In this case, base, xStride and yStride are set to pixels, 1, and width, respectively, indicating that
pixel (x,y) can be found at memory address

pixels + 1 * x + width * y.

The call to writePixels (), in line 3, copies the image's pixels from memory to the file. The argument
towritePixels (), height, specifies how many scan lines worth of data are copied.

Finally, returning from function writeRgbal () destroys the local RgbaOutputFile object, thereby
closing the file.

Why do we have to tell the writePixels () function how many scan lines we want to write? Shouldn't
the RgbaOutputFile object be able to derive the number of scan lines from the data window? The
IImImf library doesn't require writing all scan lines with a single writePixels () call. Many programs
want to write scan lines individually, or in small blocks. For example, rendering computer-generated
images can take a significant amount of time, and many rendering programs want to store each scan line in
the image file as soon as all of the pixels for that scan line are available. This way, users can look at a
partial image before rendering is finished. The IlmImf library allows writing the scan lines in top-to-

bottom or bottom-to-top direction. The direction is defined by the file header's line order attribute
(INCREASING Y or DECREASING_Y). By default, scan lines are written top to bottom (INCREASING Y).

You may have noticed that in the example above, there are no explicit checks to verify that writing the file
actually succeeded. If the IlmImf library detects an error, it throws a C++ exception instead of returning a
C-style error code. With exceptions, error handling tends to be easier to get right than with error return
values. For instance, a program that calls our writeRgbal () function can handle all possible error
conditions with a single try/catch block:

try
{
writeRgbal (fileName, pixels, width, height);
}
catch (const std::exception &exc)
{
std::cerr << exc.what () << std::endl;

}

Writing a Cropped RGBA Image

Now we are going to store a cropped image in a file. For this example, we assume that we have a frame
buffer that is large enough to hold an image with width by height pixels, but only part of the frame
buffer contains valid data. In the file's header, the size of the whole image is indicated by the display
window, (0, 0) - (width-1, height-1), and the data window specifies the region for which valid
pixel data exist. Only the pixels in the data window are stored in the file.
void
writeRgba2 (const char fileNamel],
const Rgba *pixels,
int width,
int height,
const Box2i &dataWindow)

Box2i displayWindow (V2i (0, 0), Vv2i (width - 1, height - 1));
RgbaOutputFile file (fileName, displayWindow, dataWindow, WRITE_ RGBA);
file.setFrameBuffer (pixels, 1, width);

file.writePixels (dataWindow.max.y - dataWindow.min.y + 1);

}

The code above is similar to that in Writing an RGBA Image File on page 4, where the whole image was
stored in the file. Two things are different, however: When the RgbaOutputFile object is created, the
data window and the display window are explicitly specified rather than being derived from the image's
width and height. The number of scan lines stored in the file by writePixels () is equal to the height of
the data window instead of the height of the whole image. Since we are using the default INCREASING Y
direction for storing the scan lines in the file, writePixels () starts at the top of the data window, at y
coordinate dataWWindow.min.y, and proceeds toward the bottom, at y coordinate dataWindow.max.y.

Even though we are storing only part of the image in the file, the frame buffer is still large enough to hold
the whole image. In order to save memory, a smaller frame buffer could have been allocated, just big
enough to hold the contents of the data window. Assuming that the pixels were still stored in contiguous
scan lines, with the pixels pointer pointing to the pixel at the upper left corner of the data window, at
coordinates (dataWindow.min.x, dataWindow.min.y), the arguments to the setFrameBuffer ()
call would have to be to be changed as follows:

int dwWidth = dataWindow.max.x - dataWindow.min.x + 1;

file.setFrameBuffer
(pixels - dataWindow.min.x - dataWindow.min.y * dwWidth, 1, dwWidth);

With these settings, evaluation of

base + x * xStride + y * yStride

for pixel (dataWindow.min.x, dataWindow.min.y) produces

pixels - dataWindow.min.x - dataWindow.min.y * dwWidth
+ dataWindow.min.x * 1
+ dataWindow.min.y * dwWidth

= pixels -

- dataWindow.min.
- dataWindow.min.
+ dataWindow.min.
+ dataWindow.min.

* (dataWindow.max.x - dataWindow.min.x + 1)

MM X

* (dataWindow.max.x - dataWindow.min.x + 1)

= pixels,

which is exactly what we want. Similarly, calculating the addresses for pixels (dataWindow.min.x+1,
dataWWindow.min.y) and (dataWindow.min.x, dataWindow.min.y+1) yields pixels+1l and
pixels+dwiWidth, respectively.

Storing Custom Attributes

We will now to store an image in a file, and we will add two extra attributes to the image file header: a
string, called "comments", and a 4x4 matrix, called "cameraTransform".
void
writeRgba3 (const char fileNamel],
const Rgba *pixels,
int width,
int height,
const char comments/[],
const M44f &cameraTransform)

Header header (width, height);
header.insert ("comments", StringAttribute (comments));
header.insert ("cameraTransform", M44fAttribute (cameraTransform));

RgbaOutputFile file (fileName, header, WRITE RGBA);
file.setFrameBuffer (pixels, 1, width);
file.writePixels (height);

The setFrameBuffer () and writePixels () calls are the same as in the previous examples, but
construction of the RgbaOutputFile object is different. The constructors in the previous examples
automatically created a header on the fly, and immediately stored it in the file. Here we explicitly create a
header and add our own attributes to it. When we create the RgbaOutputFile object, we tell the
constructor to use our header instead of creating its own.

In order to make it easier to exchange data between programs written by different people, the IlmImf
library defines a set of standard attributes for commonly used data, such as colorimetric information, time
and place where an image was recorded, or the owner of an image file's content. For the current list of
standard attributes, see the header file ImfStandardAttributes.h. The list is expected to grow over
time as OpenEXR users identify new types of data they would like to represent in a standard format. If you
need to store some piece of information in an OpenEXR file header, it is probably a good idea to check if a
suitable standard attribute exists, before you define a new attribute.

Reading an RGBA Image File

Reading an RGBA image is almost as easy as writing one:

void

readRgbal (const char fileName[],
Array2D<Rgba> &pixels,
int &width,
int &height)

RgbaInputFile file (fileName);
Box2i dw = file.dataWindow () ;

width dw.max.x - dw.min.x + 1;
height dw.max.y - dw.min.y + 1;
pixels.resizeErase (height, width);

file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width, 1, width);
file.readPixels (dw.min.y, dw.max.y);

}

Constructing an RgbaInputFile object, passing the name of the file to the constructor, opens the file and
reads the file's header.

After asking the RgbaInputFile object for the file's data window, we allocate a buffer for the pixels. For
convenience, we use the IlmImf library's Array2D class template (the call to resizeErase () does the
actual allocation). The number of scan lines in the buffer is equal to the height of the data window, and the
number of pixels per scan line is equal to the width of the data window. The pixels are represented as
Rgba structs.

Note that we ignore the display window in this example; in a program that wanted to place the pixels in the
data window correctly in an overall image, the display window would have to be taken into account.

Just as for writing a file, calling setFrameBuffer () tells the RgbaInputFile object how to access
individual pixels in the buffer. (See also Writing a Cropped RGBA Image, on page 5.)

Calling readPixels () copies the pixel data from the file into the buffer. If one or more of the R, G, B,
and A channels are missing in the file, the corresponding field in the pixels is filled with an appropriate
default value. The default value for R, G and B is 0.0, or black; the default value for A is 1.0, or opaque.

Finally, returning from function readRgbal () destroys the local RgbaInputFile object, thereby closing
the file.

Unlike the RgbaOutputFile's writePixels () method, readPixels () has two arguments. Calling
readPixels (y1l,y2) copies the pixels for all scan lines with y coordinates from y1 to y2 into the frame
buffer. This allows access to the the scan lines in any order. The image can be read all at once, one scan
line at a time, or in small blocks of a few scan lines. It is also possible to skip parts of the image.

Note that even though random access is possible, reading the scan lines in the same order as they were
written, is more efficient. Random access to the file requires seek operations, which tend to be slow.
Calling the RgbalnputFile's 1ineOrder () method returns the order in which the scan lines in the file were
written (INCREASING Y or DECREASING Y). If successive calls to readPixels () access the scan lines
in the right order, the [ImImf library reads the file as fast as possible, without seek operations.

Reading an RGBA Image File in Chunks

The following shows how to read an RGBA image in blocks of a few scan lines. This is useful for
programs that want to process high-resolution images without allocating enough memory to hold the
complete image. These programs typically read a few scan lines worth of pixels into a memory buffer,
process the pixels, and store them in another file. The buffer is then re-used for the next set of scan lines.
Image operations like color-correction or compositing ("A over B") are very easy to do incrementally this
way. With clever buffering of a few extra scan lines, incremental versions of operations that require access
to neighboring pixels, like blurring or sharpening, are also possible.

void

readRgba2 (const char fileName[])

{
RgbaInputFile file (fileName);
Box2i dw = file.dataWindow () ;

int width = dw.max.x - dw.min.x + 1;
int height = dw.max.y - dw.min.y + 1;
Array2D<Rgba> pixels (10, width);

while (dw.min.y <= dw.max.y)

{
file.setFrameBuffer (&pixels[0][0] - dw.min.x - dw.min.y * width,
1, width);

file.readPixels (dw.min.y, min (dw.min.y + 9, dw.max.y));
// processPixels (pixels)

dw.min.y += 10;
}

Again, we open the file and read the file header by constructing an RgbaInputFile object. Then we
allocate a memory buffer that is just large enough to hold ten complete scan lines. We call readPixels ()
to copy the pixels from the file into our buffer, ten scan lines at a time. Since we want to re-use the buffer
for every block of ten scan lines, we have to call setFramebuffer () before each readPixels () call, in
order to associate ~memory address &pixels[0][0] first with pixel coordinates
(dw.min.x, dw.min.y), then with (dw.min.x, dw.min.y+10), (dw.min.x, dw.min.y+20) and
SO on.

Reading Custom Attributes

In Storing Custom Attributes on page 6, we showed how to store custom attributes in the image file header.
Here we show how to test whether a given file's header contains particular attributes, and how to read those
attributes' values.

void

readHeader (const char fileName[])

{
RgbaInputFile file (fileName);

const StringAttribute *comments =
file.header () .findTypedAttribute <StringAttribute> ("comments");

const M44fAttribute *cameraTransform =
file.header () .findTypedAttribute <M44fAttribute> ("cameraTransform");

if (comments)
cout << "comments\n " << comments->value () << endl;

if (cameraTransform)
cout << "cameraTransform\n" << cameraTransform->value () << flush;

As usual, we open the file by constructing an RgbalnputFile object. Calling
findTypedAttribute<T> (n) searches the header for an attribute with type T and name n. If a matching
attribute is found, findTypedAttribute () returns a pointer to the attribute. If the header contains no
attribute with name n, or if the header contains an attribute with name n, but the attribute's type is not T,
findAttribute () returns 0. Once we have pointers to the attributes we were looking for, we can access
their values by calling the attributes' value () methods.

In this example, we handle the possibility that the attributes we want may not exist by explicitly checking
for 0 pointers. Sometimes it is more convenient to rely on exceptions instead. Function
typedAttribute (), a variation of findTypedAttribute (), also searches the header for an attribute
with a given name and type, but if the attribute in question does not exist, typedAttribute () throws an
exception rather than returning 0.

Note that the pointers returned by findTypedAttribute() point to data that are part of the
RgbaInputFile object. The pointers become invalid as soon as the RgbaInputFile object is destroyed.
Therefore, the following will not work:
void
readComments (const char fileName[], StringAttribute *&comments)
{
// error: comments pointer is invalid after this function returns
RgbaInputFile file (fileName);

comments = file.header () .findTypedAttribute <StringAttribute> ("comments");
}

readComments () must copy the attribute's value before it returns; for example, like this:

void
readComments (const char fileName[], string &comments)

{

RgbaInputFile file (fileName);
comments = file.header () .typedAttribute<StringAttribute> ("comments") .value();

Luminance/Chroma and Gray-Scale Images

Writing an RGBA image file usually preserves the pixels without losing any data; saving an image file and
reading it back does not alter the pixels' R, G, B and A values. Most of the time, lossless data storage is
exactly what we want, but sometimes file space or transmission bandwidth are limited, and we would like
to reduce the size of our image files. It is often acceptable if the numbers in the pixels change slightly as
long as the image still looks just like the original.

The RGBA interface in the IlmImf library supports storing RGB data in luminance/chroma format. The R,
G, and B channels are converted into a luminance channel, Y, and two chroma channels, RY and BY. The
Y channel represents a pixel's brightness, and the two chroma channels represent its color. The human
visual system's spatial resolution for color is much lower than the spatial resolution for brightness. This
allows us to reduce the horizontal and vertical resolution of the RY and BY channels by a factor of two.
The visual appearance of the image doesn't change, but the image occupies only half as much space, even
before data compression is applied. (For every four pixels, we store four Y values, one RY value, and one
BY value, instead of four R, four G, and four B values.)

When opening a file for writing, a program can select how it wants the pixels to be stored. The
constructors for class RgbaOutputFile have an rgbaChannels argument, which determines the set of
channels in the file:

WRITE RGB red, green, blue
WRITE _RGBA red, green, blue, alpha
WRITE_YC luminance, chroma

WRITE RGB red, green, blue

WRITE_YCA luminance, chroma, alpha
WRITE_Y luminance only
WRITE_YA luminance, alpha

WRITE Y and WRITE YA provide an efficient way to store gray-scale images. The chroma channels for a
gray-scale image contain only zeroes, so they can be omitted from the file.

When an image file is opened for reading, class RgbaInputFile automatically detects luminance/chroma
images and converts the pixels back to RGB format.

Using the General Interface for Scan Line Based Files

Writing an Image File

This example demonstrates how to write an OpenEXR image file with two channels: one channel, of type
HALF, is called G, and the other, of type FLOAT, is called Z. The size of the image is width by height
pixels. The data for the two channels are supplied in two separate buffers, gpixels and zPixels. Within
each buffer, the pixels of each scan line are contiguous in memory.

void

writeGZl (const char fileName[],
const half *gPixels,
const float *zPixels,
int width,
int height)

Header header (width, height); // 1
header.channels () .insert ("G", Channel (HALF)); // 2
header.channels () .insert ("2Z", Channel (FLOAT)); // 3
OutputFile file (fileName, header); // 4
FrameBuffer frameBuffer; // 5
frameBuffer.insert ("G", // name // 6
Slice (HALF, // type /]
(char *) gPixels, // base // 8
sizeof (*gPixels) * 1, // xStride// 9
sizeof (*gPixels) * width)); // yStride// 10
frameBuffer.insert ("2Z", // name // 11
Slice (FLOAT, // type /] 12
(char *) zPixels, // base // 13
sizeof (*zPixels) * 1, // xStride// 14
sizeof (*zPixels) * width)); // yStride// 15
file.setFrameBuffer (frameBuffer); // 16
file.writePixels (height); // 17

}

In line 1, an OpenEXR header is created, and the header's display window and data window are both set to
(0, 0) - (width-1, height-1).

Lines 2 and 3 specify the names and types of the image channels that will be stored in the file.

Constructing an OutputFile object in line 4 opens the file with the specified name, and stores the header
in the file.

10

Lines 5 through 16 tell the outputFile object how the pixel data for the image channels are laid out in
memory. After constructing a FrameBuffer object, a Slice is added for each of the image file's
channels. A Slice describes the memory layout of one channel. The constructor for the Slice object
takes four arguments, type, base, xStride, and yStride. type specifies the pixel data type (HALF,
FLOAT, or UINT); the other three arguments define the memory address of pixel (x,y) as

base + x * xStride + y * yStride.

Note: base is of type char*, and that offsets from base are not implicitly multiplied by the size of an
individual pixel, as in the RGBA-only interface. xStride and yStride must explictly take the size of the
pixels into account.

With the values specified in our example, the IImImf library computes the address of the G channel of
pixel (x,y) like this:

(half*) ((char*)gPixels + x * sizeof(half) * 1 + y * sizeof (half) * width)
= (half*) ((char*)gPixels + x * 2 + y * 2 * width),

The address of the Z channel of pixel (x,y) is

(float*) ((char*)zPixels + x * sizeof(float) * 1 + y * sizeof(float) * width)
= (float*) ((char*)zPixels + x * 4 + y * 4 * width).

The writePixels () call in line 17 copies the image's pixels from memory into the file. As in the RGBA-
only interface, the argument to writePixels () specifies how many scan lines are copied into the file.
(See Writing an RGBA Image File, on page 4.)

If the image file contains a channel for which the FrameBuffer object has no corresponding S1ice, then
the pixels for that channel in the file are filled with zeroes. If the FrameBuffer object contains a Slice
for which the file has no channel, then the s1ice is ignored.

Returning from function writeGz1 () destroys the local outputFile object and closes the file.

Writing a Cropped Image

Writing a cropped image using the general interface is analogous to writing a cropped image using the
RGBA-only interface, as shown in Writing a Cropped RGBA Image on page 5. In the file's header the data
window is set explicitly instead of being generated automatically from the image's width and height. The
number of scan lines that are stored in the file is equal to the height of the data window, instead of the
height of the entire image. As in Writing a Cropped RGBA Image, the example code below assumes that
the memory buffers for the pixels are large enough to hold width by height pixels, but only the region
that corresponds to the data window will be stored in the file. For smaller memory buffers with room only
for the pixels in the data window, the base, xStride and yStride arguments for the FrameBuffer
object's slices would have to be adjusted accordingly. (Again, see Writing a Cropped RGBA Image, on
page 5.)

void

writeGZ2 (const char fileNamel],
const half *gPixels,
const float *zPixels,
int width,
int height,
const Box2i &dataWindow)

Header header (width, height);
header.dataWindow () = dataWindow;
header.channels () .insert ("G", Channel (HALF));
header.channels () .insert ("Z", Channel (FLOAT));
OutputFile file (fileName, header);

FrameBuffer frameBuffer;

11

frameBuffer.insert ("G",
Slice

frameBuffer.insert ("2",
Slice

file.setFrameBuffer
file.writePixels

Reading an Image File

In this example, we read an OpenEXR image file using the [ImImf library's general interface. We assume
that the file contains two channels, R, and G, of type HALF, and one channel, Z, of type FLOAT. If one of
those channels is not present in the image file, the corresponding memory buffer for the pixels will be filled

with an appropriate default value.

void
readGz1

(HALF,

(char *) gPixels,

sizeof (*gPixels) * 1,
sizeof (*gPixels) * width));
(FLOAT,

(char *) zPixels,

sizeof (*zPixels) 1,
sizeof (*zPixels) * width));

(frameBuffer) ;
(dataWindow.max.y - dataWindow.min.y +

(const char fileName[],

Array2D<half> &rPixels,
Array2D<half> &gPixels,
Array2D<float> &zPixels,

int &width,
InputFile file

Box2i dw =
width =

(fileName) ;

int &height)

file.header () .dataWindow () ;
dw.max.x - dw.min.x + 1;

//
//
//

//

name
type
base
xStride
yStride

name
type
base
xStride
yStride

height = dw.max.y - dw.min.y + 1;
rPixels.resizeErase (height, width);
gPixels.resizeErase (height, width);
zPixels.resizeErase (height, width);
FrameBuffer frameBuffer;
frameBuffer.insert ("R", //
Slice (HALF, //
(char *) (&rPixels[0][0] - //
dw.min.x -
dw.min.y * width),
sizeof (rPixels[0][0]) * 1, //
sizeof (rPixels[0][0]) * width,//
1, 1, //
0.0)); //
frameBuffer.insert ("G", //
Slice (HALF, //
(char *) (&gPixels[0][0] - //
dw.min.x -
dw.min.y * width),
sizeof (gPixels[0][0]) * 1, //
sizeof (gPixels[0][0]) * width,//
1, 1, //
0.0)): //

12

name

type
base

xStride
yStride

x/y sampling
fillvalue

name

type
base

xStride
yStride

x/y sampling
fillvalue

frameBuffer.insert ("2", // name
Slice (FLOAT, // type
(char *) (&zPixels[0][0] - // base
dw.min.x -
dw.min.y * width),

sizeof (zPixels[0][0]) * 1, // xStride
sizeof (zPixels[0][0]) * width,// yStride

1, 1, // x/y sampling
FLT MAX)); // fillvValue

file.setFrameBuffer (frameBuffer);
file.readPixels (dw.min.y, dw.max.y);
}

First, we open the file with the specified name, by constructing an InputFile object.

Using the Array2D class template, we allocate memory buffers for the image's R, G and Z channels. The
buffers are big enough to hold all pixels in the file's data window.

Next, we create a FrameBuf fer object, which describes our buffers to the IlmImf library. For each image
channel, we add a slice to the FrameBuffer.

As usual, the slice's type, xStride, and yStride describe the corresponding buffer's layout. For the R
channel, pixel (dw.min.x, dw.min.y) is at address &rPixels[0] [0]. By setting the type, xStride
and yStride of the corresponding S1ice object as shown above, evaluating

base + x * xStride + y * yStride

for pixel (dw.min.x, dw.min.y) produces

(char*) (&rPixels[0][0] - dw.min.x - dw.min.y * width)
+ dw.min.x * sizeof (rPixels[O0][0]) * 1
+ dw.min.y * sizeof (rPixels[0][0]) * width

(char*) &rPixels[0] [0]

- dw.min.x * sizeof (rPixels[0][0])
- dw.min.y * sizeof (rPixels[0][0]) * width
+ dw.min.x * sizeof (rPixels[0][0])
+ dw.min.y * sizeof (rPixels[0][0]) * width

= &rPixels[0][0].

The address calculations for pixels (dw.min.x+1, dw.min.y) and (dw.min.x, dw.min.y+1)
produce &rPixels[0][0]+1 and &rPixels[0][0]+width, which is equivalent to srPixels[0][1]
and srPixels[1][0].

Each slice hasa fillvalue. If the image file does not contain an image channel for the S1ice, then the
corresponding memory buffer will be filled with the fi11value.

The Slice's remaining two parameters, xSampling and ySampling are used for images where some of
the channels are subsampled, for instance, the RY and BY channels in luminance/chroma images. (See
Luminance/Chroma and Gray-Scale Images, on page 9.) Unless an image contains subsampled channels,
xSampling and ySampling should always be set to 1. For details see header files ImfFrameBuffer.h
and ImfChannelList.h

After describing our memory buffers' layout, we call readPixels () to copy the pixel data from the file
into the buffers. Just as with the RGBA-only interface, readPixels () allows random-access to the scan
lines in the file. (See Reading an RGBA Image File in Chunks, on page 8.)

13

Interleaving Image Channels in the Frame Buffer

Here is a variation of the previous example. We are reading an image file, but instead of storing each
image channel in a separate memory buffer, we interleave the channels in a single buffer. The buffer is an
array of structs, which are defined like this:

typedef struct GZ
{
half g;
float z;
}i

The code to read the file is almost the same as before; aside from reading only two instead of three
channels, the only difference is how base, xStride and yStride for the Slices in the FrameBuffer
object are computed:

void

readGZ2 (const char fileNamel],
Array2D<GZ> &pixels,
int &width, int &height)

InputFile file (fileName);

Box2i dw = file.header () .dataWindow () ;
width = dw.max.x - dw.min.x + 1;
height = .max.y - dw.min.y + 1;

int dx = dw.min.x;

int dy = dw.min.y;

I
Q.
=

pixels.resizeErase (height, width);
FrameBuffer frameBuffer;

frameBuffer.insert ("G",
Slice (HALF,
(char *) &pixels[-dy][-dx].g,
sizeof (pixels[0]1[0]1) * 1,
sizeof (pixels[0]1[0]) * width));
frameBuffer.insert ("2",
Slice (FLOAT,
(char *) &pixels[-dy][-dx].z,
sizeof (pixels[0][0]) * 1,
sizeof (pixels[0][0]) * width));

file.setFrameBuffer (frameBuffer):;
file.readPixels (dw.min.y, dw.max.y);

Which Channels are in a File?

In functions readGz1 () and readGz2 (), above, we simply assumed that the files we were trying to read
contained a certain set of channels. We relied on the IlmImf library to do "something reasonable" in case
our assumption was not true. Sometimes we want to know exactly what channels are in an image file
before reading any pixels, so that we can do what we think is appropriate.

14

The file's header contains the file's channel list. Using iterators similar to those in the C++ Standard
Template Library, we can iterate over the channels:

const Channellist &channels = file.header () .channels();

for (ChannellList::ConstIterator i = channels.begin(); i != channels.end(); ++1i)
{

const Channel &channel = i.channel();

//

}

Channels can also be accessed by name, either with the [] operator, or with the findChannel () function:

const ChannellList &channels = file.header () .channels();
const Channel &channel = channelList["G"];
const Channel *channelPtr = channellList.findChannel ("G") ;

The difference between the [] operator and findChannel () function is how errors are handled. If the
channel in question is not present, findChannel () returns 0; the [] operator throws an exception.

Layers

In an image file with many channels it is sometimes useful to group the channels into layers, that is, into
sets of channels that logically belong together. Grouping channels into layers is done using a naming
convention: channel C in layer L is called L.C.

For example, a computer-generated picture of a 3D scene may contain a separate set of R, G and B
channels for the light that originated at each one of the light sources in the scene. Every set of R, G, and B
channels is in its own layer. If the layers are called lightl, light2, light3, etc., then the full names of the
channels in this image are light1.R, light1.G, light1.B, light2.R, light2.G, light2.B, light3.R, and so on.

Layers can be nested; for instance, lightl.specular.R refers to the R channel in the specular sub-layer of
layer light1.

nn nn

Channel names that do not contain a ".", or that contain a "." only at the beginning or at the end are not
considered to be part of any layer.

Class ChannelList has two member functions that support per-layer access to channels: layers ()
returns the names of all layers in a ChannelList, and channelsInLayer () converts a layer name into a
pair of iterators that allows iterating over the channels in the corresponding layer.

The following sample code prints the layers in a ChannelList and the channels in each layer:

const Channellist &channels = ... ;

set<string> layerNames;
channels.layers (layerNames);

for (set<string>::const iterator i = layerNames.begin();
i != layerNames.end() ;
++1)

cout << "layer " << *i << endl;

ChannellList::ConstIterator layerBegin, layerEnd;
channels.channelsInlLayer (*i, layerBegin, layerEnd);

for (Channellist::ConstIterator j = layerBegin;
j != layerEnd;
++7)

cout << "\tchannel " << j.name() << endl;

15

Tiles, Levels and Level Modes

A single tiled OpenEXR file can hold multiple versions of an image, each with a different resolution. Each
version is called a level. A tiled file's level mode defines how many levels are stored in the file. There are
three different level modes:

ONE_LEVEL The file contains only a single, full-resolution level. A ONE LEVEL
image file is equivalent to a scan line based file; the only difference is
that the pixels are accessed by tile instead of by scan line.

MIPMAP LEVELS The file contains multiple levels. The first level holds the image at full
resolution. Each successive level is half the resolution of the previous
level in x and y direction. The last level contains only a single pixel.
MIPMAP LEVELS files are used for texture-mapping and similar
applications.

RIPMAP_LEVELS Like MIPMAP LEVELS, but with more levels. The levels include all
combinations of reducing the resolution of the image by powers of two
independently in x and y direction. Used for texture mapping, like
MIPMAP LEVELS. The additional levels in a RIPMAP LEVELS file can
help to accelerate anisotropic filtering during texture lookups.

In MIPMAP LEVELS and RIPMAP LEVELS mode, the size (width or height) of each level is computed by
halving the size of the level with the next higher resolution. If the size of the higher-resolution level is odd,
then the size of the lower-resolution level must be rounded up or down in order to avoid arriving at a non-
integer width or height. The rounding direction is determined by the file's level size rounding mode.

Within each level, the pixels of the image are stored in a two-dimensional array of tiles. The tiles in an
OpenEXR file can be any rectangular shape, but all tiles in a file have the same size. This means that
lower-resolution levels contain fewer, rather than smaller, tiles.

An OpenEXR file's level mode and rounding mode, and the size of the tiles are stored in an attribute in the
file header. The value of this attribute is a TileDescription object:

enum LevelMode

{
ONE_LEVEL,
MIPMAP_LEVELS,
RIPMAP LEVELS

}i

enum LevelRoundingMode
{

ROUND_DOWN,

ROUND _UP
}i

class TileDescription

{

public:
unsigned int xSize; // size of a tile in the x dimension
unsigned int ySize; // size of a tile in the y dimension
LevelMode mode;

LevelRoundingMode roundingMode;

// (methods omitted)

16

Using the RGBA-only Interface for Tiled Files

Writing a Tiled RGBA Image File with One Resolution Level
Writing a tiled RGBA image with a single level is easy:

void
writeTiledRgbaONEl (const char fileNamel],
const Rgba *pixels,
int width, int height,
int tileWidth, int tileHeight)

TiledRgbaOutputFile out (fileName,

width, height, // image size

tileWidth, tileHeight, // tile size

ONE_LEVEL, // level mode

ROUND_DOWN, // rounding mode

WRITE RGBA) ; // channels in file // 1
out.setFrameBuffer (pixels, 1, width); // 2
out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1); // 3

}

Opening the file and defining the pixel data layout in memory are done in almost the same way as for scan
line based files:

Construction of the TiledRgbaOutputFile object, in line 1, creates an OpenEXR header, sets the
header's attributes, opens the file with the specified name, and stores the header in the file. The header's
display window and data window are both set to (0, 0) - (width-1, height-1). The size of each
tile in the file will be tilewidth by tileHeight pixels. The channel list contains four channels, R, G,
B, and A, of type HALF.

Line 2 specifies how the pixel data are laid out in memory. The arithmetic involved in calculating the
memory address of a specific pixel is the same as for the scan line based interface. (See Writing an RGBA
Image File, on page 4.) We assume that the pixels pointer points to an array of width*height pixels,
which contains the entire image.

Line 3 copies the pixels into the file. The TiledRgbaOutputFile's writeTiles () method takes four
arguments, dxMin, dyMin, dxMax and dyMax; writeTiles () writes all tiles that have tile coordinates
(dx,dy), where dxMin < dx <dxMax and dyMin <dy <dyMax. The numXTiles () method returns the
number of tiles in the x direction, and similarly, the numYTiles () method returns the number of tiles in
the y direction. Thus,

out.writeTiles (0, out.numXTiles() - 1, 0, out.numYTiles() - 1);

writes the entire image.

This simple method works well when enough memory is available to allocate a frame buffer for the entire
image. When allocating a frame buffer for the whole image is not desirable, for example because the
image is very large, a smaller frame buffer can be used. Even a frame buffer that can hold only a single tile
is sufficient, as demonstrated in the following example:
void
writeTiledRgbaONE2 (const char fileNamel[],
int width, int height,
int tileWidth, int tileHeight)

17

TiledRgbaOutputFile out (fileName,

width, height, // image size
tileWidth, tileHeight, // tile size
ONE LEVEL, // level mode
ROUND DOWN, // rounding mode
WRITE RGBA) ; // channels in file // 1
Array2D<Rgba> pixels (tileHeight, tilewWidth); // 2
for (int tileY = 0; tileY < out.numYTiles (); ++tileY) // 3
{
for (int tileX = 0; tileX < out.numXTiles (); ++tileX) // 4
{
Box21i range = out.dataWindowForTile (tileX, tileY); // 5
generatePixels (pixels, width, height, range); // 6

out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],

1, // xStride
tileWidth); // yStride /77
out.writeTile (tileX, tileY); // 8

In line 2 we allocate a pixels array with tileWidth*tileHeight elements, which is just enough for
one tile. Line 5 computes the data window range for each tile, that is, the set of pixel coordinates covered
by the tile. The generatePixels () function, in line 6, fills the pixels array with one tile's worth of
image data. The same pixels array is reused for all tiles. We must call setFrameBuffer (), in line 7,
before writing each tile so that the pixels in the array are accessed properly in the writeTile () call in
line 8. Again, the address arithmetic to access the pixels is the same as for scan line based files. The
values for the base, xStride, and yStride arguments to the setFrameBuffer () call must be chosen so
that evaluating the expression

base + x * xStride + y * yStride

produces the address of the pixel with coordinates (x,y).

Writing a Tiled RGBA Image File with Mipmap Levels

In order to store a multi-resolution image in a file, we can allocate a frame buffer large enough for the
highest-resolution level, (0, 0), and reuse it for all levels:

void
writeTiledRgbaMIP1l (const char fileNamel],
int width, int height,
int tileWidth, int tileHeight)

TiledRgbaOutputFile out (fileName,
width, height,
tileWidth, tileHeight,
MIPMAP LEVELS,
ROUND_DOWN,

WRITE RGBA) ; // 1
Array2D<Rgba> pixels (height, width); // 2
out.setFrameBuffer (&pixels[0][0], 1, width); // 3

18

for (int level = 0; level < out.numLevels (); ++level) // 4

{

generatePixels (pixels, width, height, level); // 5
out.writeTiles (0, out.numXTiles (level) - 1, // 6
0, out.numYTiles (level) - 1,
level);

The main difference here is the use of MIPMAP LEVELS in line 1 for the TiledRgbaOutputFile
constructor. This signifies that the file will contain multiple levels, each level being a factor of 2 smaller in
both dimensions than the previous level. Mipmap images contain n levels, with level numbers

(0,0), (1,1), ... (n-1,n-1),

where

n = floor (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND DOWN, or

n = ceil (log (max (width, height)) / log (2)) + 1

if the level size rounding mode is ROUND_UP. Note that even though level numbers are pairs of integers,
(1x, ly), only levels where 1x equals 1y are used in MIPMAP LEVELS files.

Line 2 allocates a pixels array with width by height pixels, big enough to hold the highest-resolution
level.

In order to store all tiles in the file, we must loop over all levels in the image (line 4). numLevels ()
returns the number of levels, n, in our mipmapped image. Since the tile sizes remain the same in all levels,
the number of tiles in both dimensions varies between levels. numxTiles () and numYTiles () take a
level number as an optional argument, and return the number of tiles in the x or y direction for the
corresponding level. Line 5 fills the pixels array with appropriate data for each level, and line 6 stores
the pixel data in the file.

As with ONE_LEVEL images, we can choose to only allocate a frame buffer for a single tile and reuse it for
all tiles in the image:

void
writeTiledRgbaMIP2 (const char fileNamel],
int width, int height,
int tileWidth, int tileHeight)

TiledRgbaOutputFile out (fileName,
width, height,
tileWidth, tileHeight,
MIPMAP LEVELS,
ROUND_DOWN,
WRITE RGBA) ;

Array2D<Rgba> pixels (tileHeight, tileWidth);

for (int level = 0; level < out.numLevels (); ++level)

{
for (int tileY = 0; tileY < out.numYTiles (level); ++tileY)

{
for (int tileX = 0; tileX < out.numXTiles (level); ++tileX)
{
Box21 range = out.dataWindowForTile (tileX, tileY, level);

generatePixels (pixels, width, height, range, level);

19

out.setFrameBuffer (&pixels[-range.min.y][-range.min.x],
1, // xStride
tileWidth) ; // yStride

out.writeTile (tileX, tileY, level);

The structure of this code is the same as for writing a ONE_LEVEL image using a tile-sized frame buffer, but
we have to loop over more tiles. Also, dataWindowForTile () takes an additional level argument to
determine the pixel range for the tile at the specified level.

Writing a Tiled RGBA Image File with Ripmap Levels

The ripmap level mode allows for storing all combinations of reducing the resolution of the image by
powers of two independently in both dimensions. Ripmap files contains nx*ny levels, with level
numbers:

(0, 0), (1, 0), (nx-1, 0),
0, 1), (1, 1), (nx-1, 1),
(0,ny-1), (1,ny-1), ... (nx-1,ny-1)
where
nx = floor (log (width) / log (2)) + 1

ny = floor (log (height) / log (2)) + 1

if the level size rounding mode is ROUND DOWN, or

nx = ceil (log (width) / log (2)) + 1
ny = ceil (log (height) / log (2)) + 1

if the level size rounding mode is ROUND_UP.

With a frame buffer that is large enough to hold level (0, 0), we can write a ripmap file like this:

void
writeTiledRgbaRIP1l (const char fileNamel[],
int width, int height,
int tileWidth, int tileHeight)

TiledRgbaOutputFile out (fileName,
width, height,
tileWidth, tileHeight,
RIPMAP LEVELS,
ROUND_DOWN,
WRITE RGBA) ;

Array2D<Rgba> pixels (height, width);
out.setFrameBuffer (&pixels[0]1[0], 1, width);

for (int yLevel = 0; yLevel < out.numYLevels (); ++yLevel)
{
for (int xLevel = 0; xLevel < out.numXLevels (); ++xLevel)

{
generatePixels (pixels, width, height, xLevel, yLevel);

20

out.writeTiles (0, out.numXTiles (xLevel) - 1
0, out.num¥Tiles (yLevel) - 1
xLevel,
yLevel) ;

}

As for ONE_LEVEL and MIPMAP LEVELS files, the frame buffer doesn't have to be large enough to hold a
whole level. Any frame buffer big enough to hold at least a single tile will work.

Reading a Tiled RGBA Image File
Reading a tiled RGBA image file is done similarly to writing one:

void

readTiledRgbal (const char fileNamel[],
Array2D<Rgba> &pixels,
int &width,
int &height)

TiledRgbaInputFile in (fileName) ;

Box21 dw = in.dataWindow() ;
width = dw.max.x - dw.min.x + 1;
height = dw.max.y - dw.min.y + 1;

int dx = dw.min.x;
int dy = dw.min.y;

pixels.resizeErase (height, width);

in.setFrameBuffer (&pixels[-dy][-dx], 1, width);
in.readTiles (0, in.numXTiles() - 1, 0, in.numYTiles() - 1);
}

First we need to create a TiledRgbaInputFile object for the given file name. We then retrieve
information about the data window in order to create an appropriately sized frame buffer, in this case large
enough to hold the whole image at level (0,0). After we set the frame buffer, we read the tiles from the
file.

This example only reads the highest-resolution level of the image. It can be extended to read all levels, for
multi-resolution images, by also iterating over all levels within the image, analogous to the examples in
Writing a Tiled RGBA Image File with Mipmap Levels, on page 18, and Writing a Tiled RGBA Image File
with Ripmap Levels, on page 20.

Using the General Interface for Tiled Files

Writing a Tiled Image File

This example is a variation of the one in Writing an Image File, on page 10. We are writing a ONE_LEVEL
image file with two channels, G, and Z, of type HALF, and FLOAT respectively, but here the file is tiled
instead of scan line based:
void
writeTiledl (const char fileNamel[],
Array2D<GZ> é&pixels,
int width, int height,
int tileWidth, int tileHeight)

21

Header header (width, height); // 1
header.channels () .insert ("G", Channel (HALF)); //
header.channels () .insert ("2", Channel (FLOAT)); // 3

N

header.setTileDescription

(TileDescription (tileWidth, tileHeight, ONE_LEVEL)); // 4
TiledOutputFile out (fileName, header); // 5
FrameBuffer frameBuffer; // 6
frameBuffer.insert ("G", // name //

Slice (HALF, // type // 8

(char *) g&pixels[0]([0].g, // base // 9

sizeof (pixels[0][0]) * 1, // xStride // 10

sizeof (pixels[0][0]) * width)); // yStride // 11

frameBuffer.insert ("2", // name // 12
Slice (FLOAT, // type // 13

(char *) g&pixels[0][0].z, // base // 14

sizeof (pixels[0][0]) * 1, // xStride // 15
sizeof (pixels[0][0]) * width)); // yStride // 16

out.setFrameBuffer (frameBuffer); // 17
out.writeTiles (0, out.numXTiles() - 1, 0, out.num¥YTiles() - 1); // 18

}

As one would expect, the code here is very similar to the code in Writing an Image File on page 10. The
file's header is created in line 1, while lines 2 and 3 specify the names and types of the image channels that
will be stored in the file. An important addition is line 4, where we define the size of the tiles and the level
mode. In this example we use ONE_LEVEL for simplicity. Line 5 opens the file and writes the header.
Lines 6 through 17 tell the TiledOutputFile object the location and layout of the pixel data for each
channel. Finally, line 18 stores the tiles in the file.

Reading a Tiled Image File

Reading a tiled file with the general interface is virtually identical to reading a scan line based file, as
shown in Interleaving Image Channels in the Frame Buffer, on page 14; only the last three lines are
different. Instead of reading all scan lines at once with a single function call, here we must iterate over all
tiles we want to read.

void

readTiledl (const char fileName[],
Array2D<GZ> &pixels,
int &width, int &height)

TiledInputFile in (fileName);

Box2i dw = in.header () .dataWindow () ;
width = dw.max.x - dw.min.x + 1;
height dw.max.y - dw.min.y + 1;
int dx dw.min.x;

int dy = dw.min.y;

pixels.resizeErase (height, width);

FrameBuffer frameBuffer;

22

frameBuffer.insert ("G",
Slice (HALF,
(char *) gpixels[-dy][-dx].g,
sizeof (pixels[0][0]) * 1,
sizeof (pixels[0]1[0]) * width));

frameBuffer.insert ("2",
Slice (FLOAT,
(char *) gpixels[-dy][-dx].z,

sizeof (pixels[0]1[0]) * 1,
sizeof (pixels[0][0]) * width));
in.setFrameBuffer (frameBuffer);
in.readTiles (0, in.numXTiles() - 1, 0, in.numYTiles() - 1);

In this example we assume that the file we want to read contains two channels, G and Z, of type HALF and
FLOAT respectively. If the file contains other channels, we ignore them. We only read the highest-
resolution level of the image. If the input file contains more levels (MIPMAP LEVELS or
MIPMAP LEVELS), we can access the extra levels by calling a four-argument version of the readTile ()
function:

in.readTile (tileX, tileY, levelX, levelY);

or by calling a six-argument version of readTiles ():

in.readTiles (tileXMin, tileXMax, tileYMin, tileYMax, levelX, levelY):;

Deep Data Files (New in 2.0)

Writing a Deep Scan Line File

This example creates an deep scan line file with two channels. It demonstrates how to write a deep scan
line file with two channels:

1. type FLOAT, is called Z, and is used for storing sample depth, and
2. type HALF, is called A and is used for storing sample opacity.

The size of the image is width by height pixels.

void writeDeepScanlineFile (const char filenamel],
Box2i displayWindow,
Box2i dataWindow,
Array2D< float* > &dataZz,
Array2D< half* > &datah,
Array2D< unsigned int > sampleCount)

int height = dataWindow.max.y - dataWindow.min.y + 1;
int width = dataWindow.max.x - dataWindow.min.x + 1;
Header header (displayWindow, dataWindow) ;
header.channels () .insert ("2", Channel (FLOAT)) ;
header.channels () .insert ("A", Channel (HALF)) ;
header.setType (DEEPSCANLINE) ;

header.compression() = ZIP_COMPRESSION;

DeepScanLineOutputFile file(filename, header);

DeepFrameBuffer frameBuffer;

23

frameBuffer.insertSampleCountSlice (Slice (UINT,
(char *) (&sampleCount[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),

sizeof (unsigned int) * 1, // xStride
sizeof (unsigned int) * width)); // yStride
frameBuffer.insert ("2",
DeepSlice (FLOAT,
(char *) (&dataz[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),
sizeof (float *) * 1, // xStride for pointer array
sizeof (float *) * width, // yStride for pointer array
sizeof (float) * 1)); // stride for Z data sample
frameBuffer.insert ("A",
DeepSlice (HALF,
(char *) (&dataA[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),
sizeof (half *) * 1, // xStride for pointer array
sizeof (half *) * width, // yStride for pointer array
sizeof (half) * 1)); // stride for A data sample

file.setFrameBuffer (frameBuffer);
file.readPixelSampleCounts (height);

for (int 1 = 0; i < height; i++)

{
for (int j = 0; j < width; j++)
{

sampleCount[i][j] = getPixelSampleCount (i,J);
dataz[i] [j] = new float[sampleCount[i][j]];
dataA[i] [j] = new half[sampleCount[i][]]];

// Generate data for dataZ and dataA.
}

file.writePixels (1) ;

}

for (int 1 = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
delete[] datazlil[]j];
delete[] dataAlil[j];

}

The interface for deep scan line files is similar to scan line files. We added two new classes to deal with
deep data: DeepFrameBuffer and DeepSlice. DeepFrameBuffer only accepts DeepSlice as its
input, except that it accepts Slice for sample count slice. The first difference we see from the previous
version is:

header.setType (DEEPSCANLINE) ;

where we set the type of the header to a predefine string DEEPSCANLINE, then we insert a sample count
slice using insertSampleCountSlice (). After that, we insert a DeepSlice with deep z data. Notice
that deep slices have three strides, one more than non-deep slices. The first two strides are used for the
pointers in the array. Because the memory space for Array2D is contiguous, we can get the strides easily.
The third stride is used for pixel samples. Because the data type is float (and we are not interleaving), the
stride should be sizeof (float). If we name the stride for deep data samples sampleStride, then the
memory address of the i-th sample of this channel in pixel (x, y) is

24

base +

x * xStride +

y * yStride +

i * sampleStride

Because we may not know the data until we are going to write it, the deep data file must support postponed
initialization, as shown in the example code. Another approach would be to prepare all the data first, and

then write it all out at once.

Once the slices have been inserted, we get the sample count for each pixel, via a user-supplied
getPixelSampleCount () function, and dynamically allocate memory for the Z and A channels. We

then write to file in a line-by-line fashion and finally free the the intermediate data structures.

Reading a Deep Scan Line File

An example of reading a deep scan line file created by previous code.

void readDeepScanlineFile (const char filenamel[],
Box2i& displayWindow,
Box2i& dataWindow,
Array2D< float* >& dataZz,
Array2D< half* >& dataa,
Array2D< unsigned int >& sampleCount)

DeepScanlLineInputFile file(filename) ;
const Header& header = file.header();

dataWindow = header.dataWindow () ;

displayWindow = header.displayWindow () ;

int width = dataWindow.max.x - dataWindow.min.x + 1;
int height = dataWindow.max.y - dataWindow.min.y + 1;

sampleCount.resizeErase (height, width);
dataZ.resizeErase (height, width);
dataA.resizeErase (height, width);

DeepFrameBuffer frameBuffer;

frameBuffer.insertSampleCountSlice (Slice (UINT,
(char *) (&sampleCount[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),

sizeof (unsigned int) * 1, // xStride
sizeof (unsigned int) * width)); // yStride

frameBuffer.insert ("dataz",
DeepSlice (FLOAT,
(char *) (&dataz[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),

sizeof (float *) * 1, // xStride for pointer array
sizeof (float *) * width, // yStride for pointer array
sizeof (float) * 1)); // stride for Z data sample

frameBuffer.insert ("dataA",
DeepSlice (HALF,
(char *) (&dataA[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),

sizeof (half *) * 1, // xStride for pointer array
sizeof (half *) * width, // yStride for pointer array
sizeof (half) * 1)); // stride for O data sample

25

file.setFrameBuffer (frameBuffer) ;
file.readPixelSampleCounts (dataWindow.min.y, dataWindow.max.y) ;

for (int 1 = 0; i < height; i++)
for (int j = 0; j < width; j++)
{
dataz[i] [j] = new float[sampleCount[i]
1

(3117
dataAli] [j] = new half[sampleCount[i][7]]

17
}

file.readPixels (dataWindow.min.y, dataWindow.max.y);

for (int i = 0; i < height; i++)
for (int j = 0; j < width; Jj++)
{
delete[] datazl[il[j];
delete[] dataAlil[j];

}

The interface for deep scan line files is similar to scan line files. The main the difference is we use the
sample count slice and deep data slices. To do this, we added a new method to read the sample count table
from the file:

file.readPixelSampleCounts (dataWindow.min.y, dataWindow.max.y) ;

This method reads all pixel sample counts in the range [dataWindow.min.y, dataWindow.max.y],
and stores the data to sample count slice in framebuffer.

ReadPixels () supports for postponed memory allocation.

Writing a Deep Tiled File

This example creates an deep tiled file with two channels. It demonstrates how to write a deep tiled file
with two channels:

1. type FLOAT, is called Z, and is used for storing sample depth, and
2. type HALF, is called A and is used for storing sample opacity.

The size of the image is width by height pixels.

void writeDeepTiledFile (const char filename[],
Box2i displayWindow,
Box2i dataWindow,
int tileSizeX, int tileSizeY)

int height = dataWindow.max.y - dataWindow.min.y + 1;
int width = dataWindow.max.x - dataWindow.min.x + 1;
Header header (displayWindow, dataWindow) ;

header.channels () .insert ("2", Channel (FLOAT)) ;
header.channels () .insert ("A", Channel (HALF)) ;
header.setType (DEEPTILE) ;
header.setTileDescription (
TileDescription(tileSizeX, tileSizeY, MIPMAP LEVELS));

Array2D< unsigned int* > dataZ;
dataZ.resizeErase (height, width);
Array2D< unsigned int* > datah;
dataA.resizeErase (height, width);

Array2D<unsigned int> sampleCount;
sampleCount.resizeErase (height, width);

26

DeepTiledOutputFile file(filename, header);
DeepFrameBuffer frameBuffer;

frameBuffer.insertSampleCountSlice (Slice (UINT,
(char *) (&sampleCount[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),
sizeof (unsigned int) * 1, // xStride
sizeof (unsigned int) * width)); // yStride

frameBuffer.insert ("2",
DeepSlice (FLOAT,
(char *) (&dataz[0][0]
- dataWindow.min.x
- dataWindow.min.y * width),

sizeof (float *) * 1, // xStride for pointer array
sizeof (float *) * width, // yStride for pointer array
sizeof (float) * 1));