EusLisp
version 9.27
Reference Manual
Featuring Multithread and XToolKit

ETL-TR-95-2

January, 1995

Toshihiro Matsui
matsuiQetl.go.jp
Intelligent Systems Division
Electrotechnical Laboratory
Agency of Industrial Science and Technology
Ministry of International Trading and Industry
1-1-4 Umezono, Tsukuba-city, Ibaraki 305, JAPAN

Contents

I FuslLisp basicg

1_Introduction

IL.o Compatibility with Common Lisg e e e e e e e e e
IL.4 Revision HISTOTY« . o o e
1 IS Installation

L/ Demonstrationd

2 Data lypes

..

E.o Class Hierarchyl o o e e e e e e e e e e e e e e e e
.4 Lype SPECIeI e e e e e e e e e e e e e e e e e s e e e e e

A.2 Sequencing and ety L L L L o e e e e e e e e e e e e e e

B3 Local Functiond

p__0UDbject Uriented Programming)

bl Classes and Methodd

p.2 Message Sending L0l L L e e e e e

.o__Instance VManagement] o L L L 0 L e e e e e e e e e e e e e e e e e

b4 Basic (lassed

02 Arithmetic Predicated

b.o Integer and bit-Wise Operationg o o e e e e e e e e e e e e e e

p.o _Irigonometric and Related Functiong L Lo e e e e e e e e e e e

bbb FExtended Numberd

P lext Processing

p.l Japanese 1ext] oL . L e

82 1TCONV - Character Code (Conversion

P.o Regular BEXpression L L L e e e e e e e e e e e e e e e
p.4 DbBasebd encodingo e e e e e e
H.o_ DED cryptographyl oL e e e e e e e e e e e e e e e

DA T 1

L1 Streams and Input/Output

ii

15

17
17
17
18
18
18
19

21
21
22
22
23

26
26
26
27
28
29
30

31
31
32

35
35
38
41
43
44
45
45

47
47
47
48
48
48

49

14

L1.5

ILI.8 File-name generation

ILL.Y

File System Intertacq

2.2 Top-level Interaction

Lz.5

Compilation

2.4

Program l.oading|

LZ2.0 Debugging Aid

LZ2.0

Dump Objecty

LZ2.7 FProcess Image daving

L2.5 Customization or foplevel

129

Miscelaneols Functiond

Il FusLisp HKxtensions

Lo System Functions

Lo.2.5 Keved Indexed Fileg

L3 a Unix Processed

ILo.4 Adding Lisp Functions Coded 1n (§

ILo.0 Foreign Language Intertace

04 NMualtithread

1L4.1

Design of Multithread EusLisp

L4.1.1 Multithread in Solaris 2 operating syvstemy
L4.1.2 Context Separation

L4.1.5 Memory Management

4.2 Asynchronous and Farallel Programming Constructy

U4 2 1 Thread Creation and ['hread Poaol

L4.2.50 Synchronization primitivey

iii

57
57
57
o8
59
60
60
60
61

62
62
64
66
68
70
72
72
73
73

74

74
74
7
7
7
79
81
82
82
83
84
85
86
86

I6 Geometric Modeling

o 1 NMihscellaneonus (Geometric Eunctiond

I16.2 Line and Ededq

Lo 3 Plane and Facd

10.4 bod Y,
IL6.0 FPrimitive body Creation
IL6.06 _body Composition

Lo ([Coordinates-axed

Lo s Badies in Contactl

L7 Viewing and (Graphicg

| V 0

s Image Frocessing

8.1 Look-Up Tables (LUL).
Iy.2 Fixel-lmagq
IL¥.0 Color-Fixel-lmagq
IIs.4 Hdge Findey

K .

8.6 Image File I/O
I18.7 JPEG compression/decompression . . .

1LY Manipulatorg
LY 1 Kotational Jointl

iv

92
93
93
93
94
95

97
97
98
100
101
103
105

107
107
111
114
117
119
120
121
122
125

127
127
128
130
131
134
135

136
136
137
139
140
142
143
144

145
145
145

150

... 152
BUO.3 Graphic Confexf] o o e 157
BU.Z Colors and Colormapy« v v v v v e e e e e e e e e e e e e e 159
PTXToolKif 162
DITXTENEndl o e e 163
PT27Panel e e e 164
R1.2.1 Subpanels (menu-panel and menubar-panel) 165

2I2 2 Hile Panel 0 00 0o e e e e 166

PIZ3 Text View Panel 167

2lo Panel Ifemd 0 L 0 0L e e e 168
DI TADVAS o o e e e e e e 172
Plao lext WIndaml L L Ll e 172
B2 PostgreSUL Databas€ 177
BZT PostgreSUII o o e 177
P HTTP 179
ol HITTE Chenfl 0 L0 0 0 L o o e e e e e e e e e e 179
P32 HTTP CGI Programming v v v v v v v vttt e e e e e e e e e e e e 180

Part 1
EusLisp Basics

1 Introduction

FusLisp is an integrated programming system for the research on intelligent robots based on Common Lisp
and Object-Oriented programming. The principal subjects in the field of robotics research are sensory data
processing, visual environment recognition, collision avoiding motion planning, and task planning. In either
problem, three dimensional shape models of robots and environment play crucial roles. A motivation to
the development of EusLisp was a demand for an extensible solid modeler that can easily be made use of
from higher level symbolic processing system. Investigations into traditional solid modelers proved that
the vital requirement for their implementation language was the list processing capability to represent and
manage topology among model components. Numerical computation power was also important, but locality
of geometric computation suggested the provision of vector/matrix functions as built-ins would greatly ease
programming.

Thus the primary decision to build a solid modeler in a Lisp equipped with a geometric computation
package was obtained. Although a solid modeler provides facilities to define shapes of 3D objects, to simulate
their behaviors, and to display them graphically, its applications are limited until it is incorporated in robot
modules mentioned above. These modules also need to be tightly interconnected to achieve fully integrated
robot systems. EusLisp sought for the framework of this integration in object-oriented programming (OOP).
While OOP promotes modular programming, it facilitates incremental extension of existing functions by
using inheritance of classes. In fact, components in the solid modeler, such as bodies, faces, and edges, can
orderly be inplemented by extending one of the most basic class coordinates. These components may have
further subclasses to provide individual functions for particular robot applications.

Based upon these considerations, EusLisp has been developped as an object-oriented Lisp which
implements an extensible solid modeler[?]. Other features include intertask communication needed for the
cooperative task coordination, graphics facilities on X-window for visual user interface, and foreign language
interface to support mixed language programming.

In the implementation of the language, two performance-effective techniques were invented in type
discrimination and memory management [5, 7, ?]. The new type discrimination method guarantees constant-
time discrimination between types in tree structured hiearchy without regard to the depth of trees. Heap
memory is managed in Fibonacci buddy method, which improves memory efficiency without sacrificing
runtime or garbage-collection performance.

This reference manual describes EusLisp version 7.27 in two parts, FusLisp Basics and FusLisp Ez-
tensions. The first part describes Common Lisp features and object-oriented programming. Since a number
of literatures are available on both topics, the first part is rather indifferent except EusLisp’s specific features
as described in Interprocess Communication and Network, Toplevel Interaction, Disk Save, etc. Beginners
of EusLisp are advised to get familiar with Common Lisp and object oriented programming in other ways
[2, @]. The second part deals with features more related with robot applications, such as Geometric Mod-
elling, Image Processing, Manipulator Model and so on. Unfortunately, the descriptions in this part may
become incomplete or inaccurate because of EusLisp’s rapid evolution. The update information is available
via euslisp mailing list as mentioned in section 8.

1.1 EusLisp’s Object-Oriented Programming

Unlike other Lisp-based object-oriented programming languages like CLOS [d], EusLisp is a Lisp system
built on the basis of object-orientation. In the former approach, Lisp is used as an implementation language
for the object-oriented programming, and there is apparent distinction between system defined objects and
user defined objects, since system data types do not have corresponding classes. On the other hand, every
data structure in EusLisp except number is represented by an object, and there is no inherent difference
between built-in data types, such as cons and symbols, and user defined classes. This implies that even the
system built-in data types can be extended (inherited) by user-defined classes. Also, when a user defines his
own class as a subclass of a built-in class, he can use built-in methods and functions for the new class, and
the amount of description for a new program can be reduced. For example, you may extend the cons class
to have extra field other than car and cdr to define queues, trees, stacks, etc. Even for these instances,

1. Introduction 2

built-in functions for built-in cons are also applicable without any loss of efficiency, since those functions
recognize type hierarchy in a constant time. Thus, EusLisp makes all the system built-in facilities open to
programmers in the form of extensible data types. This uniformity is also beneficial to the implementation
of EusLisp, because, after defining a few kernel functions such as defclass, send, and instantiate, in the
implementation language, most of house-keeping functions to access the internal structure of built-in data
types can be coded in EusLisp itself. This has much improved the reliability and maintainability of EusLisp.

1.2 Features

object-oriented programming FEusLisp provides single-inheritance Object-Oriented programming. All
data types except numbers are represented by objects whose behaviors are defined in their classes.

Common Lisp EusLisp follows the specifications of Common Lisp described in [2] and [3] as long as they
are consistent with EusLisp’s goal and object-orientation. See next subsection for incompatibilities.

compiler EusLisp’s compiler can boost the execution 5 to 30 times as fast as the interpreted execution.
The compiler keeps the same semantics as the interpreter.

memory management Fibonacci buddy method, which is memory efficient, GC efficient, and robust, is
used for the memory management. EusLisp can run on machines with relatively modest amount of
memory. Users are free from the optimization of page allocation for each type of data.

geometric primitives Since numbers are always represented as immediate data, no garbage is generated
by numeric computation. A number of geometric functions for arbitrary-sized vectors and matrices
are provided as built-in functions.

geometric modeler Solid models can be defined from primitive bodies using CSG set operations. Mass
properties, interference checking, contact detection, and so on, are available.

graphics Hidden-line eliminated drawing and hidden-surface eliminated rendering are available. Postscript
output to idraw can be generated.

image processing Edge based image processing facility is provided.
manipulator model 6 D.O.F.s robot manipulator can easily be modeled.

Xwindow interface Three levels of Xwindow interface, the Xlib foreign functions, the Xlib classes and the
original XToolKit classes are provided.

foreign-language interface Functions written in C or other languages can be linked into EusLisp. Bidi-
rectional call between EusLisp and other language are supported. Functions in libraries like LINPACK
become available through this interface. Call-back functions in X toolkits can be defined in Lisp.

unix binding Most of unix system calls and unix library functions are assorted as Lisp functions. Signal
handling and asynchronous I/O are also possible.

multithread multithread programming, which enables multiple contexts sharing global data, is available on
Solaris 2 operating system. Multithread facilitates asynchronous programming and improves real-time
response(d, ?]. If EusLisp runs on multi-processor machines, it can utilize parallel processors’ higher
computating power.

1.3 Compatibility with Common Lisp

Common Lisp has become the well-documented and widely-available standard Lisp [2, B]. Although EusLisp
has introduced lots of Common Lisp features such as variable scoping rules, packages, sequences, generalized
variables, blocks, structures, keyword parameters, etc., incompatibilities still remain. Here is a list of missing
features:

1. multiple values: multiple-value-call,multiple-value-progl, etc., are present only in a limited way;

2. some of data types: bignum, character, deftype, complex number and ratio (the last two are present
only in a limited way);

1. Introduction 3

3. some of special forms: progv, compiler-let,macrolet

Following features are incomplete:

4. closure — only valid for dynamic extent

5. declare,proclaim — inline and ignore are unrecognized

1.4 Revision History

1986 The first version of EusLisp ran on Unix-System5/Ustation-E20. Fibonacci buddy memory manage-
ment, simple compiler generating M68020 assembly code, and vector/matrix functions were tested.

1987 The new fast type checking method is implemented. The foreign language interface and the SunView
interface were incorporated.

1988 The compiler was changed to generate C programs as intermediate code. Since the compiler became
processor independent, EusLisp was ported on Ultrix/VAX8800 and on Sun0S3.5/Sun3 and /Sun4 .
IPC facility using socket streams was added. The solid modeler was implemented. Lots of Common
Lisp features such as keyword parameters, labeled print format to handle recursive data objects, generic
sequence functions, readtables, tagbody, go, flet, and labels special forms, etc., were added.

1989 The Xlib interface was introduced. % read macro to read C-like mathematical expressions was made.
manipulator class is defined.

1990 The XView interface was written by M.Inaba. Ray tracer was written. Solid modeler was modified to
keep CSG operation history. Asynchronous I/O was added.

1991 The motion constraint program was written by H.Hirukawa. Ported to DEC station. Coordinates class
changed to handle both 2D and 3D coordinate systems. Body composition functions were enhanced
to handle contacting objects. CSG operation for contacting objects. The package system became
compatible with Common Lisp.

1992 Face+ and face* for union and intersection of two coplanar faces were added. Image processing
facility was added. The first completed reference manual was printed and delivered.

1993 EusLisp was stable.

1994 Ported to Solaris 2. Multi-context implementation using Solaris’s multithread facility. XToolKit is
built. Multi robot simulator, MARS was written by Dr. Kuniyoshi. EusLisp organized session at RSJ
94, in Fukuoka.

1995 The second version of the reference manual is published.
2010 Version 9.00 is releaced, The licence is changed to BSD.
2011 Add Darwin OS Support, Add model files.

2013 Add Cygwin 64 Bit support, expand MXSTACK from 65536 to 8388608, KEYWORDPARAMETER-
LIMIT from 32 to 128.

2014 Use UTF-8 for documents, Version 9.10 is releaced.

2015 more error check on min/max, support arbitrary length for vplus, more quiet for non-ttyp mode,
Version 9.11 is releaced.

2015 Version 9.12 is released, support ARM Version 9.13 is released, support class documentation Version
9.14 is released, fix assert API. Now message is optional (defmacro assert (pred &optional message)
Version 9.15 is released, fix char comparison function (previous version retuns opossite result), support
multiple argument at function /=, add url encode feature (escape-url function), support microsecond
add/subtract in interval-time class Version 9.16 is released, added make-random-state, fixed bug in
lib/1lib/unittest.]

1. Introduction 4

FILES this document
README | a brief guide to lisence, installation and sample run
VERSION | EUSLisp version number

bin executables (eus, euscomp and eusx)

c/ EusLisp kernel written in C

1/ kernel functions written in EusLisp

comp/ EusLisp compiler written in EusLisp

clib/ library functions written in C

doc/ documentation (latex and jlatex sources and memos)
geo/ geometric and graphic programs

lib/ shared libraries (.so) and start-up files

1lib/ Lisp library

1lib2/ secondary Lisp library developed at UTYO

xwindow/ | X11 interface
makefile@ | symbolic link to one of makefile.sun[34]os[34],.vax, etc.
pprolog/ tiny prolog interpreter

xview/ xview tool kit interface

tool/

vxworks/ interface with VxWorks real-time OS

robot/ robot models and simulators

vision/ image processing programs

contact/ motion constraint solver by H.Hirukawa [, 7, ?]
demo/ demonstrative programs

bench/ benchmark programs

Table 1: Directories in *eusdir*

2016 Version 9.17 is released, add trace option in (init-unit-test), enable to read #f(nan inf)fix models/doc.
Version 9.18 is released, support gee-5. Version 9.20 is released, support OSX (gluTessCallback, glGen-
TexturesEXT), add GL.COLOR_ATTACHMENT constants, fix color-image class, (it uses RGB not
BGR). Version 9.21 is released, fix :trim of hashtab class, enable to compile filename containing -,
do not raise error when not found cygpq.dll (Cygwin) Version 9.22 is released, add :color option to
:draw-box, :draw-polyline, :draw-star, with-output-to-string returns color instead of nil, print call stack
on error, check if classof is called with pointer, pass symbol pointer to funcall in apply, add error check
of butlast and append.

2017 Version 9.23 is released, support ARM64, udpate models.

2018 Version 9.24 is released, change trans.l to put .h file on same directory, fix potential segmentation
error in READLINE, increase max count of pushsequence for 64bit machine, remove size limitation for
READLINE, enable to compile filename containing ’-’, add pattern option in :methods, check norm
is nan for ROTANGLE, force normalize norm vector in optional argument of vector-angle, fix error
on :distance when point is on the same plane, fix compiler when argument is not integer wit (1+)
/ (1-), fix abs for 64bit machine, fix read-binary, use cfree instead of free, extend defun function for
documentation, support 18.04. Version 9.25 is released, C defun() function now takes 5 arguments
includeing doc string. Version 9.26 is released, fix typo in manuals, move test code from jskeus repos-
itory, clean compile warnings, use minmemory instead of _end in all architecture for some compiler
(aarch64/gcc-6), fix problem on call :draw-on after :draw-arrow, generate euslisp.hlp when compiled,
enable to run :halve and :double in color-image.

2019 Version 9.27 is released. Fix documentation. Print E_.USER within default error handler. Add :init
method into ration class. Update Mesa version of GL constant files. Add :word-size=64 to *features™
and refer this information to execute on 64bit machine.

1.5 Installation

The installation procedure is described in README. The installation directory, which is assumed to be
"/usr/local/eus/", should be set to the global variable *eusdir*, since this location is referenced by
load and the compiler.

Subdirectories in *eusdir* are described in table M. Among these, ¢/, 1/, comp/, geo/, clib/,
and xwindow contain essential files to make eus and eusx. Others are optional libraries, demonstration
programs and contributions from users.

1. Introduction 5

1.6

License

EusLisp is distributed under the following BSD License.

Copyright (c) 1984-2001, National Institute of Advanced Industrial Science
and Technology (AIST)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of the National Institute of Advanced Industrial Science
and Technology (AIST) nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Until version 8.25, Euslisp is distributed under following licence.

EusLisp can be obtained with its source code via ftp from etlport.etl.go.jp (192.31.197.99). Those

who use EusLisp must observe following articles and submit a copy of license agreement (doc/LICENCE)
to the author.

Toshihiro MATSUI

Intelligent Systems Division,

Electrotechnical Laboratory

1-1-4 Umezono, Tsukuba, Ibaraki 3058568, JAPAN. email: matsui@etl.go.jp

Users are registered in the euslisp mailing list (euslisp@etl.go.jp), where information for Q&A, bug

fix, and upgrade information is circulated. This information has been accumulated in *eusdir*/doc/mails.

1.

The copyright of EusLisp belongs to the author (Toshihiro Matsui) and Electrotechnical Laboratory.
The user must get agreement of use from the author.

. Licensee may use EusLisp for any purpose other than military purpose.

EusLisp can be obtained freely from Elecrotechnical Laboratory via ftp.

EusLisp may be copied or sold as long as articles described here are observed. When it is sold, the
seller must inform the customers that the original EusLisp is free.

. When licensees publicize their researches or studies which used EusLisp, the use of EusLisp must be

cited with appropriate bibliography.

Licensees may add changes to the source code of EusLisp. The resulted program is still EusLisp as
long as the change does not exceed 50% of codes, and these articles must be observed for unchanged
part.

1. Introduction 6

drawn by ONDA

Figure 1: Animation of Collision Avoidance Path Planning

7. The copyright of programs developped in EusLisp belongs to the developper. However, he cannot
extend his copyright over the main body of EusLisp.

8. Neither the author nor ETL provides warranty.

1.7 Demonstrations

Demonstration programs are found in demo subdirectory. cd to *eusdir* and run eusx.

Robot Animation Load demo/animdemo.l from eusx. Smooth animation of etad manipulator will be
shown after a precomputation of approximately 20 minutes.

Ray-Tracing If you have 8-bit pseudo color display, a ray-tracing image can be generated by loading
demo/renderdemo.l. Make sure geo/render.1 has already been compiled.

Edge Vision Loading demo/edgedemo.1, a sample gray-scale image is displayed. You give parameters for
choosing the gradient operator and edge thresholds. Edges are found in a few second and overlayed on
the original image.

2. Data Types 7

2 Data Types

Like other Lisps, it is data objects that are typed, not variables. Any variable can have any object as its
value. Although it is possible to declare the type of object which is bound to a variable, but usually it is
only advisory information to the compiler to generate faster code. Numbers are represented as immediate
values in pointers and all the others are represented by objects referenced by pointers.

In the implementation of Sun4, a pointer or a number is represented by a long word as depicted in
fig.l. Two bits at LSB of a pointer are used as tag bits to discriminate between a pointer, an integer, and
a float. Since a pointer’s tags are all zero and it can use all 32 bits for addressing an object, FusLisp can
utilize up to 4GB of process address space.

MSB 31 2 1 O0LSB
pointer / ingeger / float | F
| F)
00 pointer
o1 float
10 integer
11 notused

Figure 2: Pointer and Immediate Value

2.1 Numbers

There are two kinds of numbers, integer and float (floating-point number), both are represented with 29 bits
value and 1 bit sign. Thus, integers range from -536,870,912 to 536,870,911. Floats can represent plus/minus
from 4.8E-38 to 3.8E38 with the approximate accuracy of 6 digits in decimal, i.e., floating-point epsilon is
approximately 1/1,000,000.

Numbers are always represented by immediate data, and not by objects. This is the only exception
of EusLisp’s object orientation. However, since numbers never waste heap memory, number crunching
applications run efficiently without causing garbage collection.

FusLisp does not have the character type, and characters are represented by integers. In order to
write a program independent of character code sets, #\ reader dispatch macro is used. However, when the
character is read, it is converted to numerical representation, and the printer does not know how to reconvert
it to #\ notation.

A number has two tag bits in a long word Figure B, which must be stripped off by shifting or masking
when used in arithmetic computation. Note that an integer should ignore two MSB bits by arithmetic
shifting, while a float should ignore two LSB bits by masking. Byte swap is also necessary for an architecture
like VAX which does not use the rightmost byte as the least-significant mantissa byte.

2.2 Objects

Every data other than number is represented by an object which is allocated in heap. Each memory cell of
an object has the object header and fixed number of slots for object variables. Since vectors may consist
of arbitrary number of elements, they have ’size’ slot immediately after the header. Fig. B depicts the
structures of object and vector, and their header word. Only the words indicated as slot and element are
accessible from users.

A header is composed of six fields. Two MSB bits, m and b, are used to indicate the side of the
neighbor cell in Fibonacci-buddy memory management. There are three mark bits in the mark field, each
of which is used by the garbage collector to identify accessible cells, by the printer to recognize circular
objects in printing in #n= and #n# notations, and by copy-object to copy shared objects. The elmt field
discriminates one of seven possible data types of vector elements, pointer, bit, character, byte, integer, float
and foreign-string. Although elmt can be available in the class, it is provided in the header to make the
memory manager independent of the structure of a class and to make the element accessing faster. The bid

2. Data Types 8

object vector

header
header header 31 30 29 27 26 24 23 16 15 ... 0
slot 1 size m| b| mark| elmt | bid cid
slot 2 element 1 m: memory bit for buddy
element 2 b: buddy bit for buddy

mark(3bit): GC, copy and print
elmt(3bits): type of vector elements
bid(8bits): buddy id (1..31)
cid(16bits): class id (0..255)

Figure 3: Structures of object, vector, and object header

field represents the physical size of a memory cell. 31 different sizes up to 16 MB are represented by the
five bits in this field. The lower short word (16 bits) is used for the class id. This is used to retrieve the
class of an object via the system’s class table. This class id can be regarded as the type tag of traditional
Lisps. Currently only the lower 8 bits of the cid are used and the upper 8 bits are ignored. Therefore, the
maximum number of classes is limited to 256, though this limit can be raised up to 65536 by reconfiguring
the EusLisp to allocate more memory to the system’s class table.

2.3 Class Hierarchy

The data structure of objects are defined by classes, and their behaviors are defined by methods in the classes.
In EusLisp, a few dozens of classes have already been defined in tree structured hierarchy as depicted in fig.
A. You can browse the real inheritance structure by the class-hierarchy function. The class ’object’ at the
leftmost is the ultimate super-class of all the classes in EusLisp. User-defined classes can inherit any of these
built-in classes.

A class is defined the defclass macro or by the defstruct macro.

(defclass class-name &key :super class
:slots O
:metaclass metaclass
:element-type t
:size -1

)

(defstruct struct-name slots...)

(defstruct (struct-name [struct-options ...])

(slot-namel [slot-option...])
(slot-name2 [slot-option...])
L)

Methods are defined by the defmethod special form. Defmethod can appear any times for a
particular class.

(defmethod class-name

(:method-namel (parameter...) . bodyl)
(:method-name2 (parameter...) . body2)
L)

Field definitions for most of built-in classes are found in *eusdir*/c/eus.h header file. (describe)
class) gives the description of all the slots in class, namely, super class, slot names, slot types, method list,
and so on. Definitions of built-in classes follow. Note that the superclass of class object is NIL since it has
no super class.

(defclass object :super NIL :slots ()

2. Data Types

object

cons
queue

propertied-object
symbol
package
stream

file-stream

foreign-pod

broadcast-stream
io-stream ---- socket-stream

metaclass
vectorclass

cstructclass

read-table

array

thread
barrier-synch
synch-memory-port
coordinates

cascaded-coords

body

sphere

viewing
proj

ection
viewing2d
parallel-viewing
perspective-viewing

coordinates-axes

viewport

line --- edge --- winged-edge

plane
polygon
face
hole
semi-space
viewer
viewsurface -----
compiled-code
foreign-code
closure
load-module
label-reference
vector
float-vector
integer-vector
string
socket-address
cstruct
bit-vector
foreign-string
socket-port
pathname
hash-table
surrounding-box
stereo-viewing

tektro-viewsurface

Figure 4: Hierarchy of Predefined Classes

2. Data Types

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

(defclass

cons :super object :slots (car cdr))

propertied-object :super object
:slots (plist)) ;property list

symbol :super propertied-object

:slots (value ;specially bound value
vtype ;const (0) ,var(1) ,special(2)
function ;global func def
pname ;print name string
homepkg)) ;home package

foreign-pod :super symbol

:slots (podcode ;entry code
paramtypes ;type of arguments
resulttype))

package :super propertied-object

:slots (names ;list of package name and nicknames
uses ;spread use-package list
symvector ;hashed obvector
symcount ;number of interned symbols
intsymvector ;hashed obvector of internal symbols
intsymcount ;number of interned intermal symbols
shadows ;shadowed symbols
used-by)) ;packages using this package

stream :super propertied-object

:slots (direction ; tinput or :output, nil if closed
buffer ;buffer string
count ;current character index
tail)) ;last character index

file-stream :super stream
:slots (fd ;file descriptor (integer)
fname)) ;file name str; qid for msgq

broadcast-stream :super stream
:slots (destinations)) ;Streams to which output is delivered

io-stream :super propertied-object
:slots (instream outstream))

socket-stream :super io-stream
:slots (address)) ; socket address

read-table :super propertied-object
:slots (syntax ; byte vector representing character types
; O:illegal, 1l:white, 2:comment, 3:macro
; 4:constituent, 5:single_escape
; 6:multi_escape, 7:termmacro, 8:nonterm_macro
macro ;character macro expansion function
dispatch-macro))

10

2. Data Types

(defclass array :super propertied-object

:slots (entity ;simple vector storing array entity
rank ;anumber of dimensions: 0-7
fillpointer ;pointer to push next element
offset ;offset for displaced array

dim0,diml,dim2,dim3,dim4,dim5,dim6)) ;dimensions

(defclass metaclass :super propertied-object

:slots (name ;class name symbol
super ;super class
cix ;class id
vars ;var name vector including inherited vars
types ;type vector of object variables

forwards ;components to which messages are forwarded
methods)) ;method list

(defclass vectorclass :super metaclass
:slots (element-type ;vector element type 0-7
size)) ;vector size; 0 if unspecified

(defclass cstructclass :super vectorclass

:slots (slotlist)) ;cstruct slot descriptors
(defclass vector :super object :slots (size))
(defclass float-vector :super vector :element-type :float)
(defclass string :super vector :element-type :char)

(defclass hash-table :super propertied-object

:slots (lisp::key ;hashed key vector
value ; value vector
size ; the size of the hash table
count ; number of elements entered in the table

lisp::hash-function
lisp::test-function
lisp::rehash-size
lisp::empty lisp::delpted

(defclass queue :super cons)

(defclass pathname :super propertied-object

:slots (lisp::host device ; not used
directory ; list of directories
name ; file name before the last "."
type ; type field after the last "."
lisp::version) ; not used
(defclass label-reference ;for reading #n=, #n# objects

:super object
:slots (label value unsolved next))

11

2. Data Types 12

(defclass compiled-code :super object
:slots (codevector

quotevector
type ;0=func, 1=macro, 2=special
entry)) ;entry offset

(defclass closure :super compiled-code
:slots (envl env2));environment

(defclass foreign-code :super compiled-code
:slots (paramtypes ;list of parameter types
resulttype)) ;function result type

(defclass load-module :super compiled-code
:slots (symbol-table ;hashtable of symbols defined
object-file ;name of the object file loaded, needed for unloading
handle ;file handle returned by ’’dlopen’’

2.4 Type Specifier

Though EusLisp does not have the deftype special form, type names are used in declarations and functions
requesting to specify the type of results or contents, as in coerce, map, concatenate, make-array, etc.
Usually, class names can be used as type specifiers, as in (concatenate cons "ab" "cd") = (97 98 99
100), where Common Lisp uses (quote list) instead of cons.

As EusLisp does not have classes to represent numbers, types for numbers need to be given by
keywords. :integer, integer, :int, fixnum, or :fixnum is used to represent the integer type, :float or float,
the floating point number type. As the element-type argument of make-array, :character, character,
:byte, and byte are recognized to make strings. Low level functions such as defcstruct, sys:peek, and
sys:poke, also recognize :character, character, :byte, or byte for the byte access, and :short or short
for short word access. In any cases, keywords are preferable to lisp package symbols with the same pname.

3. Forms and Evaluation 13

3 Forms and Evaluation

3.1 Atoms

A data object other than a cons is always an atom, no matter what complex structure it may have. Note that
NIL, which is sometimes noted as () to represent an empty list, is also an atom. Every atom except a symbol
is always evaluated to itself, although quoting is required in some other Common Lisp implementations.

3.2 Scoping

Every symbol may have associated value. A symbol is evaluated to its value determined in the current
binding context. There are two kinds of variable bindings; the lexical or static binding and the special or
dynamic binding. Lexically bound variables are introduced by lambda form or let and let* special forms
unless they are declared special. Lexical binding can be nested and the only one binding which is introduced
innermost level is visible, hiding outer lexical bindings and the special binding. Special variables are used in
two ways: one is for global variables, and the other is for dynamically scoped local variables which are visible
even at the outside of the lexical scope as long as the binding is in effect. In the latter case, special variables
are needed to be declared special. The declaration is recognized not only by the compiler, but also by the
interpreter. According to the Common Lisp’s terms, special variables are said to have indefinite scope and
dynamic extent.

Even if there exists a lexical variable in a certain scope, the same variable name can be redeclared to
be special in inner scope. Function symbol-value can be used to retrieve the special values regardless to
the lexical scopes. Note that set function works only for special variable, i.e. it cannot be used to change
the value of lambda or let variables unless they are declared special.

(let ((x 1))
(declare (special x))
(let* ((x (+ x %)) (y x))
(et ((y (+ 3y y)) (z (+ x x)))
(declare (special x))
(format t "x="S y="s z="s"%" xy z))))
-=> x=1 y=4 z=2

A symbol can be declared to be a constant by defconstant macro. Once declared, an attempt to
change the value signals an error thereafter. Moreover, such a constant symbol is inhibited to be used as
the name of a variable even for a local variable. NIL and T are examples of such constants. Symbols in
the keyword package are always declared to be constants when they are created. In contrast, defvar and
defparameter macro declare symbols to be special variables. defvar initializes the value only if the symbol
is unbound, and does nothing when it already has a value assigned, while defparameter always resets the
value.

When a symbol is referenced and there is no lexical binding for the symbol, its special value is retrieved.
However, if no value has been assigned to its special value yet, unbound variable error is signaled.

3.3 Generalized Variables

Generally, any values or attributes are represented in slots of objects (or in stack frames). To retrieve
and alter the value of a slot, two primitive operations, access and update, must be provided. Instead of
defining two distinct primitives for every slot of objects, EusLisp, like Common Lisp, provides uniform
update operations based on the generalized variable concept. In this concept, a common form is recognized
either as a value access form or as a slot location specifier. Thus, you only need to remember accessing form
for each slot and update is achieved by setf macro used in conjunction with the access form. For example,
(car x) can be used to replace the value in the car slot of x when used with setf as in (setf (car ’(a b)
’c), as well as to take the car value out of the list.

This method is also applicable to all the user defined objects. When a class or a structure is defined,
the access and update forms for each slot are automatically defined. Each of those forms is defined as a
macro whose name is the concatenation of the class name and slot name. For example, car of a cons can be
addressed by (cons-car ’(a b ¢)).

3. Forms and Evaluation 14

and flet quote

block function return-from
catch go setq

cond if tagbody
declare labels the

defmacro let throw
defmethod let* unwind-protect
defun progn while
eval-when or

Table 2: EusLisp’s special forms

(defclass person :super object :slots (name age))
(defclass programmer :super person :slots (language machine))
(setq x (instantiate programmer))
(setf (programmer-name x) "MATSUI"
(person-age x) 30)
(incf (programmer-age x))
(programmer-age x) --> 31
(setf (programmer-language x) ’EUSLISP
(programmer-machine x) ’SUN4)

Array elements can be accessed in the same manner.

(setq a (make-array ’(3 3) :element-type :float))
(setf (aref a 0 0) 1.0 (aref a 1 1) 1.0 (aref a 2 2) 1.0)
a -—> #2£((1.0 0.0 0.0) (0.0 1.0 0.0) (0.0 0.0 1.0))

(setq b (instantiate bit-vector 10)) --> #%x0000000000
(setf (bit b 5) 1)
b --> #%x0000010000

In order to define special setf methods for particular objects, defsetf macro is provided.

(defsetf symbol-value set)
(defsetf get (sym prop) (val) ‘(putprop ,sym ,val ,prop))

3.4 Special Forms

All the special forms are listed in Table B. macrolet, compiler-let, and progv have not been implemented.
Special forms are essential language constructs for the management of evaluation contexts and control flows.
The interpreter and compiler have special knowledge to process each of these constructs properly, while the
application method is uniform for all functions. Users cannot add their own special form definition.

3.5 Macros

Macro is a convenient method to expand language constructs. When a macro is called, arguments are
passed to the macro body, which is a macro expansion function, without being evaluated. Then, the macro
expansion function expands the arguments, and returns the new form. The resulted form is then evaluated
again outside the macro. It is an error to apply a macro or special form to a list of arguments. Macroexpand
function can be used for the explicit macro expansion.

Though macro runs slowly when interpreted, it speeds up compiled code execution, because macro
expansion is taken at compile-time only once and no overhead is left to run-time. Note that explicit call
to eval or apply in the macro function may produce different results between interpreted execution and the
compiled execution.

3. Forms and Evaluation 15

3.6 Functions

A function is expressed by a lambda form which is merely a list whose first element is lambda. If a lambda
form is defined for a symbol using defun, it can be referred as a global function name. Lambda form takes
following syntax.

(lambda ({var}x*
[%optional {var | (var [initform])}x]
[&rest form]
[&¢key {var | (var [initform]) | ((:keyword var) [initform]) }*
[&allow-other-keys]]

[%aux {var | (var [initform])}*])

{declaration}*

{form}*)

There is no function type such as EXPR, LEXPR, FEXPR, etc.: arguments to a function are always
evaluated before its application, and the number of acceptable arguments is determined by lambda-list.
Lambda-list specifies the sequence of parameters to the lambda form. Each of &optional, &rest, &key and
&aux has special meaning in lambda-lists, and these symbols cannot be used as variable names. Supplied-p
variables for &optional or &key parameters are not supported.

Since a lambda form is indistinguishable from normal list data, function special form must be used
to inform the interpreter and compiler the form is intended to be a function. Function is also important
to freeze the environment onto the function, so that all the lexical variables can be accessible in the function
even the function is passed to another function of different lexical scope. The following program does not
work either interpretedly nor after compiled, since sum from the let is invisible inside lambda form.

(let ((x ’(1 2 3)) (sum 0))
(mapc ’(lambda (x) (setq sum (+ sum x))) x))

To get the expected result, it should be written as follows:

(let ((x ’(1 2 3)) (sum 0))
(mapc #’(lambda (x) (setq sum (+ sum x))) x))

#’ is the abbreviated notation of function, i.e. #’(lambda (x) x) is equivalent to (function
(lambda (x) x)). Here is another example of what is called a funarg problem:

(defun mapvector (f v)
(do ((1 0 (1+ 1))
((>= i (length v)))
(funcall f (aref v i))))
(defun vector-sum (v)
(let ((i 0))
(mapvector #’(lambda (x) (setq i (+ i x))) V)
i))
(vector-sum #(1 2 3 4)) --> 10

FusLisp’s closure cannot have indefinite extent: i.e. a closure can only survive as long as its outer
extent is in effect. This means that a closure cannot be used for programming of “generators”. The following
program does not work.

(proclaim ’ (special gen))
(let ((index 0))

(setq gen #’(lambda () (setq index (1+ index)))))
(funcall gen)

1In CLtL-2 a quoted lambda form is no longer a function. Application of such a form is an error.

3. Forms and Evaluation 16

However, the same purpose is accomplished by object oriented programming, because an object can
hold its own static variables:

(defclass generator object (index))
(defmethod generator
(:next () (setq index (1+ index)))
(:init (&optional (start 0)) (setq index start) self))
(defvar gen (instance generator :init 0))
(send gen :next)

4. Control Structures 17

4 Control Structures

4.1 Conditionals

Although and, or and cond are advised to be macros by Common Lisp, they are implemented as special
forms in EusLisp to improve the interpreting performance.

and &rest forms [special]
Forms are evaluated from left to right until NIL appears. If all forms are evaluated to non-NIL, the
last value is returned.

or &rest forms [special]
Forms are evaluated from left to right until non-NIL appears, and the value is returned. If all forms
are evaluated to NIL, NIL is returned.

if test then &optional else [special]
if can only have single then and else forms. To allow multiple then or else forms, they must be grouped
by progn.

when test &rest forms [macro]

Unlike if, when and unless allow you to write multiple forms which are executed when test holds
(when) or does not unless. On the other hand, these macros cannot have the else forms.

unless test Erest forms [macro]
is equivalent to (when (not test) . forms).
cond &rest (test Erest forms) [special]

Arbitrary number of cond-clauses can follow cond. In each clause, the first form, that is test, is
evaluated. If it is non-nil, the rest of the forms in that clause are evaluated sequentially, and the last
value is returned. If no forms are given after the test, the value of the test is returned. When the test
fails, next clause is tried until a test which is evaluated to non-nil is found or all clauses are exhausted.
In the latter case, cond returns NIL.

case key Erest (label Erest forms) [macro]
For the clause whose label matches with key, forms are evaluated and the last value is returned.
Equality between key and label is tested with eq or memq, not with equal.

4.2 Sequencing and Lets

progl forml1 Erest forms [function]
form1 and forms are evaluated sequentially, and the value returned by formI is returned as the value
of progl.

progn &rest forms [special]

Forms are evaluated sequentially, and the value of the rightmost form is returned. Progn is a special

form because it has a special meaning when it appeared at top level in a file. When such a form is
compiled, all inner forms are regarded as they appear at top level. This is useful for a macro which
expands to a series of defuns or defmethods, which must appear at top level.

setf Erest forms [macro]
for each form in forms, assigns the second element to the generalized-variable signilized by the first
element.

let (&rest (var Eoptional value)) Erest forms [special]

introduces local variables. All values are evaluated and assigned to vars in parallel, i.e., (1let ((a
1)) (let ((a (1+ a)) (b a)) (list a b))) produces (2 1). The first statements of forms can be
declarations.

let* (Erest (var optional value)) Erest forms [special]

4. Control Structures 18

introduces local variables. All values are evaluated sequentially, and assigned to wvars i.e., (let ((a
1)) (Let* ((a (1+ a)) (b a)) (list a b))) produces (2 2).

4.3 Local Functions

flet (&rest (fname lambda-list Erest body)) Erest forms [special]
defines local functions.

labels (&rest (fname lambda-list Erest body)) Erest forms [special]
defines locally scoped functions. The difference between flet and labels is, the local functions defined
by flet cannot reference each other or recursively, whereas labels allows such mutual references.

4.4 Blocks and Exits

block tag Erest forms [special]
makes a lexical block from which you can exit by return-from. Tag is lexically scoped and is not
evaluated.

return-from tag &optional value [special]

exits the block labeled by tag. return-from can be used to exit from a function or a method which
automatically establishes block labeled by its function or method name surrounding the entire body.

return &optional value [macro]
(return x) is equivalent to (return-from nil x). This is convenient to use in conjunction with
loop, while, do, dolist, and dotimes which implicitly establish blocks labeled NIL.

catch tag Erest forms [special]
establishes a dynamic block from which you can exit and return a value by throw. Tag is evaluated.
The list of all visible catch tags can be obtained by sys:list-all-catchers.

throw tag value [special]
exits and returns value from a catch block. tag and value are evaluated.

unwind-protect protected-form Erest cleanup-forms [special]
After the evaluation of protected-form finishes, cleanup-form is evaluated. You may make a block or a
catch block outside the unwind-protect. Even return-from or throw is executed in protected-form
to escape from such blocks, cleanup-forms are assured to be evaluated. Also, if you had an error while
executing protected-form, cleanup-form would always be executed by reset.

4.5 Iteration

while test &rest forms [special]
While test is evaluated to non-nil, forms are evaluated repeatedly. While special form automatically
establishes a block by name of nil around forms, and return can be used to exit from the loop. To
jump to next iteration, you can use following syntax with tagbody and go described below:

(setq cnt 0)
(while
(< cnt 10)
(tagbody while-top
(incf cnt)
(when (eq (mod cnt 3) 0)
(go while-top)) ;; jump to next iteraction
(print cnt)

4. Control Structures 19

)) 551, 2,4,5, 7,8, 10

tagbody &rest tag-or-statement [special]
tags can be used as labels for go. You can use go only in tagbody.

go tag [special]
transfers control to the form just after tag which appears in a lexically scoped tagbody. Go to the
tag in a different tagbody across the lexical scope is inhibited.

prog varlist &rest tag-or-statement [macro]
prog is a macro, which expands as follows:

(block nil (let warlist (tagbody tag-or-statement)))

do (&rest (var Eoptional optional init next)) (endtest Eoptional result) Erest forms [macro]
vars are local variables. To each war, init is evaluated in parallel and assigned. Next, endtest is
evaluated and if it is true, do returns result (defaulted to NIL). If endtest returns NIL, each form is
evaluated sequentially. After the evaluation of forms, nezt is evaluated and the value is reassigned to

each var, and the next iteration starts.

do* (&rest (var Eoptional optional init next)) (endtest Eoptional result) Erest forms [macro]
do* is same as do except that the evaluation of init and mext, and their assignment to wvar occur
sequentially.

dotimes (var count &optional result) Erest forms [macro]

evaluates forms count times. count is evaluated only once. In each evaluation, var increments from
integer zero to count minus one.

dolist (var list &optional result) Erest forms [macro]
Each element of list is sequentially bound to var, and forms are evaluated for each binding. Dolist
runs faster than other iteration constructs such as mapcar and recursive functions, since dolist does
not have to create a function closure or to apply it, and no new parameter binding is needed.

until condition &rest forms [macro]
evaluates forms until condition holds.

loop érest forms [macro]
evaluates forms forever. To terminate execution, return-from, throw or go needed to be evaluated
in forms.

4.6 Predicates

Typep and subtypep of Common Lisp are not provided, and should be simulated by subclassp and
derivedp.

eq objl obj2 [function]
returns T if 0bj! and o0bj2 are pointers to the same object or the same numbers. Examples: (eq ’a
’a) isT, (eq 1 1)is T, (eq 1. 1.0) isnil, (eq "a" "a") is nil.

eql obj1 0bj2 [function]
Eq and eql are identical since all the numbers in EusLisp are represented as immediate values.

equal obj1 0bj2 [function]
Checks the equality of any structured objects, such as strings, vectors or matrices, as long as they do
not have recursive references. If there is recursive reference in 0bj1 or 0bj2, equal loops infinitely.

superequal 0bj1 0bj2 [function]
Slow but robust equal, since superequal checks circular reference.

null object [function]
T if object is nil. Equivalent to (eq object nil).

4. Control Structures 20

not object [function]
not is identical to null.

atom object [function]
returns NIL only if object is a cons. (atom nil) = (atom ’()) = T). Note that atom returns T for
vectors, strings, read-table, hash-table, etc., no matter what complex objects they are.

every pred Erest args [function]
returns T if all args return T for pred. Every is used to test whether pred holds for every args.

some pred Erest args [function]
returns T if at least one of args return T for pred. Some is used to test whether pred holds for any of
args.

functionp object [function]

T if object is a function object that can be given to apply and funcall. Note that macros cannot be
apply’ed or funcalled. Functionp returns T, if object is either a compiled-code with type=0, a symbol
that has function definition, a lambda-form, or a lambda-closure. Examples: (functionp ’car) = T,
(functionp ’do) = NIL

compiled-function-p object [function]
T if object is an instance of compiled-code. In order to know the compiled-code is a function or a
macro, send :type message to the object, and function or macro is returned.

5. Object-Oriented Programming 21

5 Object Oriented Programming

The structures and behaviors of objects are described in classes, which are defined by defclass macro and
defmethod special form. defclass defines the name of the class, its super class, and slot variable names,
optionally with their types and message forwarding. defmethod defines methods which will invoked when
corresponding messages are sent. Class definition is assigned to the symbol’s special value. You may think
of class as the counter part of Common Lisp’s structure. Slot accessing functions and setf methods are
automatically defined for each slot by defclass.

Most classes are instantiated from the built-in class metaclass. Class vector-class, which is a
subclass of metaclass, is a metaclass for vectors. If you need to use class-variables and class-methods,
you may make your own metaclass by subclassing metaclass, and the metaclass name should be given to
defclass with :metaclass keyword.

Vectors are different from other record-like objects because an instance of the vector can have arbitrary
number of elements, while record-like objects have fixed number of slots. EusLisp’s object is either a record-
like object or a vector, not both at the same time.

Vectors whose elements are typed or the number of elements are unchangeable can also be defined
by defclass. In the following example, class intvecb which has five integer elements is defined. Automatic
type check and conversion are performed when the elements are accessed by the interpreter. When compiled
with proper declaration, faster accessing code is produced.

(defclass intvech :super vector :element-type :integer :size 5)
(setq x (instantiate intvecb)) --> #i(0 0 0 0 0)

When a message is sent to an object, the corresponding method is searched for, first in its class, and
next in its superclasses toward object, until all superclasses are exhausted. If the method is undefined,
forward list is searched. This forwarding mechanism is introduced to simulate multiple inheritance. If the
search fails again, a method named :nomethod is searched, and the method is invoked with a list of all the
arguments. In the following example, the messages :telephone and :mail are sent to secretary slot object
which is typed person, and :go-home message is sent to chauffeur slot.

(defclass president :super object
:slots ((name :type string)
(age :type :integer)
(secretary :type person
:forward (:telephone :mail))
(chauffeur :forward (:go-home))))

In a method, two more local variables, class and self, become accessible. You should not change
either of these variables. If you do that, the ones supplied by the system are hidden, and send-super and
send self are confused.

5.1 Classes and Methods

defclass [macro]
classname &key (super object)
slots ; (var &optional type &rest forward selectors)*
(metaclass metaclass)
(element-type t)
(size -1)
creates or redefine a class. When a class is redefined to have different superclass or slot variables,
old objects instantiated from the previous class definition will behave unexpectedly, since method
definitions assume the new slots disposition.

defmethod classname Erest (selector lambda-list Erest body) [special]
defines one or more methods of classname. Each selector must be a keyword symbol.

defclassmethod classname Erest (selector lambda-list Erest body) [macro]

5. Object-Oriented Programming 22

classp object [function]
T if object is a class object, that is, an instance of class metaclass or its subclasses.

subclassp class super [function]
Checks class is a subclass of super.

vector-class-p [function]
T if z is an instance of vector-class.

delete-method class method-name [function]
The method definition is removed from the specified class.

find-method object selector [function]
tries to find a method specified by selector in the class of object and in its superclass. This is used to
know whether object can respond to selector.

class-hierarchy class [function]
prints inheritance hierarchy below class.

system:list-all-classes [function]
lists up all the classes defined so far.

system::method-cache &optional flag [function]
Interrogates the hit ratio of the method cache, and returns a list of two numbers, hit and miss. If
flag is NIL, method caching is disabled. If non-nil flag is given, method cache is purged and caching is
enabled.

5.2 Message Sending

send object selector &rest args [function]
send a message consisting of selector and args to object. object can be anything but number. selector
must be evaluated to be a keyword.

send-message target search selector €rest args [function]
Low level primitive to implement send-super.

send™ object selector &rest msg-list [macro]
send* applies send-message to a list of arguments. The relation between send and send* is like
the one between funcall and apply, or list and list*.

send-all receivers selector €rest mesg [function]
sends the same message to all the receivers, and collects the result in a list.

send-super selector &rest msgs [macro]
sends msgs to self, but begins method searching at the superclass of the class where the method
currently being executed is defined. It is an error to send-super outside a method (i.e. in a function).

send-super* selector &rest msg-list [macro]
send-super* is apply version of send-super.

5.3 Instance Management

instantiate class &optional size [function]
the lowest primitive to create a new object from a class. If the class is a vector-class, size should be
supplied.

5. Object-Oriented Programming 23

instance class &rest message [macro]
An instance is created, and the message is sent to it.

make-instance class &rest var-val-pairs [function]
creates an instance of class and sets its slot variables according to wvar-val-pairs. For example,
(make-instance cons :car 1 :cdr 2) is equivalent to (cons 1 2).

copy-object object [function]
copy-object function is used to copy objects keeping the referencing topologies even they have recur-
sive references. Copy-object copies any objects accessible from object except symbols and packages,
which are untouched to keep the uniqueness of symbols. copy-object traverses all the references in an
object twice: once to create new objects and to mark original objects that they have already copied,
and again to remove marks. This two-step process makes copy-object work slower than copy-seq. If
what you wish to copy is definitely a sequence, use of copy-seq or copy-tree is recommended.

become object class [function]
changes the class of object to class. The slot structure of both the old class and the new class must be
consistent. Usually, this can be safely used only for changing class between binary vectors, for example
from an integer-vector to a bit-vector.

replace-object dest src [function)]
dest must be an instance of the subclass of src.

class object [function]
returns the class object of object. To get the name of the class, send :name message to the class object.

derivedp object class [function]
derivedp checks if an object is instantiated from class or class’s subclasses. subclassp and derivedp
functions do not search in class hierarchy: type check always finishes within a constant time.

slot object class idex-or-name [function]
Returns the named or indexed slot value.

setslot object class index-or-name value [function]
Setslot is a internal function and users should not use it. Use, instead, combination of setf and slot.

5.4 Basic Classes

object [class]
:super
:slots

Object is the most basic class that is located at the top of class hierarchy. Since it defines no slot
variables, it is no use to make an instance of object.

:prinl &optional stream Erest mesq [method]
prints the object in the standard re-readable object format, that is, the class name and the address,
enclosed by angle brackets and preceded by a pound sign. Any subclasses of object can use this
method to print itself with more comprehensive information by using send-super macro specifying
mesg string. An object is re-readable if it begins with #<, followed by its class name, correct address,
any lisp-readable information, and >. Since every data object except numbers inherits object, you can
get print forms in this notation, even for symbols or strings. Specifying this notation, you can catch
data objects that you forgot to setq to a symbol, as long as there happened no garbage collection after
it is printed.

:slots [method]
returns the list of variable-name and value pair of all the slots of the object. You can get the value of
a specific slot by applying assoc to this list, although you cannot alter them.

5. Object-Oriented Programming 24

:methods &optional subname [method]
returns a list of all methods callable by this object. If subname is given, returns only methods with
names that include subname.

:get-val variable-name [method]
returns the value of the slot designated by variable-name. If the object does not have the variable-name
slot, an error is reported.

:set-val variable-name value [method]
sets value in the variable-name slot of this object. If the object does not have the variable-name slot,
an error is reported.

propertied-object [class]
:super object
:slots plist

defines objects that have property list. Unlike other Common Lisp, EusLisp allows any objects that
inherit propertied-object to have property lists, even if they are not symbols.

:plist &optional plist [method]
if plist is specified, it is set to the plist slot of this object. Previous plist, if there had been one, is lost.
Legal plist should be of the form of ((indicatorl . valuel) (indicator2 . value2) ...). Each
indicator can be any lisp form that are tested its equality with the eq function. When a symbol is
used for an indicator, use of keyword is recommended to ensure the equality check will be performed
interpackage-widely. :plist returns the current plist.

:get indicator [method]
returns the value associated with indicator in the property list. (send x :get :y) == (cdr (assoc
1y (send x :plist))).

:put indicator value [method]
associates value to indicator in the plist.

:remprop indicator [method]
removes indicator and value pair from the plist. Further attempt to :get the value returns nil.

:name &optional name [method]
defines and retrieves the :name property in the plist. This property is used for printing.

:prinl Eoptional stream Erest mesg [method]
prints the object in the re-readable form. If the object has :name property, it is printed after the
address of the object.

metaclass [class]
:super propertied-object
:slots name super cix vars types forwards methods

Metaclass defines classes. Classes that have own class variables should be defined with metaclass as
their superclass.

:new [method]
creates an instance of this class and returns it after filling all the slots with NIL.

:super [method]
returns the super class object of this class. You cannot alter superclass once defclassed.

:methods [method]
returns a list of all the methods defined in this class. The list is composed of lists each of which
describes the name of the method, parameters, and body.

:method name [method]

5. Object-Oriented Programming 25

returns the method definition associated with name. If not found, NIL is returned.

:method-names subname [method]
returns a list of all the method names each of which contains subname in its method name. Methods
are searched only in this class.

:all-methods [method]
returns a list of all methods that are defined in this class and its all the super classes. In other words,
an instance of this class can execute each of these methods.

:all-method-names subname [method]
returns a list of all the method names each of which matches with subname. The search is made from
this class up to object.

:slots [method]
returns the slot-name vector.

:name [method]
returns the name symbol of this class.

:cid [method]
returns an integer that is assigned to every instan