Ik
TEXAS
The University of Texas at Austin

TEXAS ADVANCED COMPUTING CENTER

WWW.TACC.UTEXAS.EDU

Lmod Testing System

Robert McLay

March. 1, 2022

Lmod Testing System

» Testing philosophy in Lmod

» Goals of testing Lmod

» Hermes/tm basic operations

» Details of how an Lmod test works

» Future Topics

m Lmod | March. 1,2022 | 2

Alternative story

How | used a testing tool | already had
How to shoehorn the Lmod testing to use tm
Why I’m using a system testing method, not unit tests.

System tests came first for me, unit testing later.

vVvyYyyvyy

Lmod uses some unit tests as well.

Lmod | March. 1,2022 | 3

Testing philosophy in Lmod

v

vvyyy

Lmod’s success relies heavily on the testing system.

Passing all the tests usually means a new version can be
released.

I don’t think that anyone is using it beside Lmod (But it is very
useful)

My philosophy is to test features in general
Not to setup a torture test
No way | can test every possible scenario.

My imagination is not that good.

Lmod | March. 1,2022 | 4

Goals of testing Lmod

P Test various features of Lmod.

» New feature won’t break old features.

» Test Lmod on Linux/MacOS, Lua 5.1 to 5.4
» Make development of Lmod easier.

>

Add tests of new bugs = Don’t repeat them!

Lmod | March. 1,2022 | 5

It is hard to test everything

Testing Old data with new versions(Collections, spiderT.lua)
One test (end2end) builds Lmod and tests the built version
All other tests use the source code directly

Special hacks to use configuration options.

vVvyYyyvyy

Environment variable are checked NOT configuration options

Lmod | March. 1,2022 | 6

Hermes/tm Testing system

vVvyvyvyYvyyvyy

Hermes is a group of tools to help with testing

tm is the testing manager program.

The main function of tm is to select tests and run them.
Each test is independent!

tm knows nothing about what is being tested.

Must tell if test passed via special file (Lua file named t1.results)
Three kinds of results

1. Passed: All steps passed
2. Failed: Did not produce a t1.results file
3. Diffed: Produced diffs between gold files and test result files.

Lmod | March. 1,2022 | 7

tmflow

vVvyYyyvyy

vVvyYyyvyy

tm searches for tests from the current directory down
It is looking for files with the *.tdesc extension (testDir)
Once all tests have been selected, it runs them all

For each test directory a sub-dir tree is created.

Typically: t1/<$TARG>-<date_time>-<uname
-s>-<arch>-<test_name>

The above dir is the outputDir

The test is run in $outputDir

The generated bash test script is named t1.script
The log of the run is t1.log

The results file are t1.result and t1.runtime

Lmod | March. 1,2022 | 8

Every project using tmmust have an
acceptance tool

vvyyy

vy

There must be an automatic way to decide a test passed.
A numerical code can use an L2 norm.
The new answer can be different but close w/ numerical codes.

Lmod use diff on stdout and stderr between gold and test
results

Filtering is required to deal with OS and file location differences
To pass the filtered result must be the same.

This is a major pain but it has been worth the effort.

Lmod | March. 1,2022 | 9

Test files (*.tdesc)

» The testDescript is a table describing the the test
> Some special parameters are:

1. $(testDir): where the *.tdesc is located

2. $(projectDir): where Hermes.db is located (top of the project)
3. $(outputDir): where the test is run

4. $(resultFn): The name of the results lua file.

Lmod | March. 1,2022 | 10

Lmod tests

» Uptil now this talk has been about tm
» Now lets talk about Lmod tests:

VVYyVYYVYYVYY

Each test contains multiple steps

Each step generates _stderr.### and _stdout.### files
These are combined and filtered into err.txt and out.txt
These file are compared with the gold files in $testDir
Result file is generated.

To pass all steps must be the same!

Lmod | March. 1,2022 | 11

extension. tdesc

local testName = "extensions"
testdescript = {
keywords = {testName },
active = true,
testName = testName,

runScript = [[

1]

$(projectDir)/rt/common_funcs.sh
unsetMT; initStdEnvVvars
export MODULEPATH_ROOT=$ (testDir)/mf
export MODULEPATH=$MODULEPATH_ROOT/Core
rm -rf _stderr.* _stdout.* err.* out.* .lmod.d

runLmod --version # 1
runLmod avail # 2
combine _stdout.[0-9][0-9][0-9] -> _stdout.orig
cleanup _stdout.orig -> out.txt

combine _stderr.[0-9][0-9][0-9] -> _stderr.orig
cleanup _stderr.orig -> out.txt

wrapperDiff --csv results.csv $(testDir)/out.txt out.txt
wrapperDiff --csv results.csv $(testDir)/err.txt err.txt
testFinish -r $(resultFn) -t $(runtimeFn) results.csv

B

tests = {

s

{ id="t1'},

Lmod | March. 1,2022 | 12

$(projectDir)/rt/common_funcs.sh

vVvyYvYyvyyvyy

Common bash shell functions are in this file

runLmod: runs the Lmod command

runBase: base command (explained later)

cleanup: Makes output generic (canonical?)
initStdEnvVars: set standard env vars, cleans up my env

unsetMT: remove moduletable from env

Lmod | March. 1,2022 | 13

runLmod

runLmod ()

He##H#RY Hu##H#H Hu##s#4 ##
turn off file globbing if it is not already off

runBase $LUA_EXEC $projectDir/src/lmod.in.lua bash --regression_testing "$@"
eval “cat _stdout.$NUM®

B HEBEHH AR R HRRRREEEH RRRBH s
turn on file globbing for users who want it.

Lmod | March. 1,2022 | 14

runBase

runBase ()

COUNT=$ (($COUNT + 1))
numStep=$ (($numStep+1))
NUM="printf "%03d" $numStep"

echo == " > _stderr.
echo >> _stderr.
echo >> _stderr.
echo " >> _stderr.
echo " > _stdout
echo >> _stdout.
echo "$@" >> _stdout.
echo "======= ============= " >> _stdout.

numStep=$ (($numStep+1))
NUM="printf "%03d" $numStep"
"$@" > _stdout.$NUM 2>> _stderr.$NUM

Lmod | March. 1,2022

$NUM
$NUM
$NUM
$NUM

. $NUM

$NUM

$NUM

15

Cleanup for stderr

cat _stderr.[0-9][0-9][0-9] > _stderr.orig
cleanUp _stderr.orig err.txt

» Combine all stderr files into _stderr.orig

» Use the cleanup shell function to canonicalize err.txt output

m Lmod | March. 1,2022 | 16

Cleanup for stdout

cat _stdout.[0-9][0-9][0-9] > _stdout.orig
joinBase64Results -bash _stdout.orig _stdout.new
cleanUp _stdout.new out.txt

» Combine all stdout files into _stdout.orig
» Convert all base64 text into regular text

» Use the cleanup shell function to canonicalize out.txt output

Lmod | March. 1,2022 | 17

Cleanup script

» converts local path names into “ProjectDIR”
P converts path to lua or shal to generic names
» Cleans up error msgs

» And many other fixes.

m Lmod | March. 1,2022 | 18

Cleanup script (II)

_stderr.orig:

step 8
/opt/apps/lua/lua/bin/lua /Users/mclay/w/lmod/src/1lmod.in.lua bash --rtesting -
t avail

/Users/mclay/w/1lmod/rt/avail/mf/Core:
PrgEnv

admin/

admin/admin-1.0

step 8

ProjectDIR/rt/avail/mf/Core:
PrgEnv

admin/

admin/admin-1.0

» Cleanup: _stderr.orig = err.txt

Lmod | March. 1,2022 | 19

Deciding if a test passes

rm -f results.csv

wrapperDiff --csv results.csv $(testDir)/out.txt out.txt
wrapperDiff --csv results.csv $(testDir)/err.txt err.txt
testFinish -r $(resultFn) -t $(runtimeFn) results.csv

» wrapperDiff isa hermes tool that runs diff and generates
a csv file (results.csv)

» It also removes the Lmod version info from err.txt

» testFinish is another hermes tool that converts results.csv
into $resultFn

» Then tm reads $resultFn to decide if this test passes

Lmod | March. 1,2022 | 20

Future Topics

P> Write one new test.
» Explain how Mname object converts names into a filename.

» More internals of Lmod?

m Lmod | March. 1,2022 | 21

