
libflame

The

Complete

Reference

(version 5.1.0-56)

Field G. Van Zee
The University of Texas at Austin

Copyright c© 2011 by Field G. Van Zee.

10 9 8 7 6 5 4 3 2 1

All rights reserved. No part of this book may be reproduced, stored, or transmitted in any manner without
the written permission of the publisher. For information, contact either of the authors.

No warranties, express or implied, are made by the publisher, authors, and their employers that the programs
contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem
whose incorrect solution could result in injury to person or property. If the programs are employed in such
a manner, it is at the user’s own risk and the publisher, authors, and their employers disclaim all liability
for such misuse.

Trademarked names may be used in this book without the inclusion of a trademark symbol. These names
are used in an editorial context only; no infringement of trademark is intended.

Library of Congress Cataloging-in-Publication Data not yet available
Draft, November 2008
This “Draft Edition” allows this material to be used while we sort out through what mechanism we will

publish the book.

Contents

1. Introduction 1

1.1. What’s provided . 1

1.2. What’s not provided . 6

1.3. Acknowledgments . 7

2. Setup for GNU/Linux and UNIX 9

2.1. Before obtaining libflame . 9

2.1.1. System software requirements . 9

2.1.2. System hardware support . 10

2.1.3. License . 10

2.1.4. Source code . 11

2.1.5. Tracking source code revisions . 11

2.1.6. If you have problems . 11

2.2. Preparation . 11

2.3. Configuration . 12

2.3.1. configure options . 12

2.3.2. Running configure . 19

2.4. Compiling . 20

2.4.1. Parallel make . 21

2.5. Installation . 22

2.6. Linking against libflame . 22

2.6.1. Linking with the lapack2flame compatibility layer . 24

3. Setup for Microsoft Windows 25

3.1. Before obtaining libflame . 25

3.1.1. System software requirements . 25

3.1.2. System hardware support . 26

3.1.3. License . 26

3.1.4. Source code . 26

3.1.5. Tracking source code revisions . 26

3.1.6. If you have problems . 26

3.2. Preparation . 26

3.3. Configuration . 28

3.3.1. IronPython . 28

3.3.2. Running configure.cmd . 30

3.4. Compiling . 30

3.5. Installation . 32

3.6. Dynamic library generation . 32

3.7. Linking against libflame . 34

i

4. Using libflame 37
4.1. FLAME/C examples . 37
4.2. FLASH examples . 39
4.3. SuperMatrix examples . 40

5. User-level Application Programming Interfaces 45
5.1. Conventions . 45

5.1.1. General terms . 45
5.1.2. Notation . 46
5.1.3. Objects . 49

5.2. FLAME/C Basics . 50
5.2.1. Initialization and finalization . 50
5.2.2. Object creation and destruction . 51
5.2.3. General query functions . 53
5.2.4. Interfacing with conventional matrix arrays . 55
5.2.5. More query functions . 62
5.2.6. Assignment/Update functions . 67
5.2.7. Math-related functions . 70
5.2.8. Miscellaneous functions . 80
5.2.9. Advanced query routines . 82

5.3. Managing Views . 84
5.3.1. Vertical partitioning . 84
5.3.2. Horizontal partitioning . 85
5.3.3. Bidirectional partitioning . 86
5.3.4. Merging views . 88

5.4. FLASH . 89
5.4.1. Motivation . 89
5.4.2. Concepts . 90
5.4.3. Interoperability with FLAME/C . 91
5.4.4. Object creation and destruction . 92
5.4.5. Interfacing with flat matrix objects . 95
5.4.6. Interfacing with conventional matrix arrays . 101
5.4.7. Object query functions . 104
5.4.8. Managing Views . 107

5.4.8.1. Vertical partitioning . 107
5.4.8.2. Horizontal partitioning . 108
5.4.8.3. Bidirectional partitioning . 109

5.4.9. Utility functions . 110
5.4.9.1. Miscellaneous functions . 110

5.5. SuperMatrix . 110
5.5.1. Overview . 110
5.5.2. API . 111
5.5.3. Integration with FLASH front-ends . 115

5.6. Front-ends . 115
5.6.1. BLAS operations . 115

5.6.1.1. Level-1 BLAS . 115
5.6.1.2. Level-2 BLAS . 130
5.6.1.3. Level-3 BLAS . 143

5.6.2. LAPACK operations . 154
5.6.3. Utility functions . 191

5.7. External wrappers . 213
5.7.1. BLAS operations . 214

5.7.1.1. Level-1 BLAS . 214
5.7.1.2. Level-2 BLAS . 223

5.7.1.3. Level-3 BLAS . 231
5.7.2. LAPACK operations . 238
5.7.3. LAPACK-related utility functions . 249

5.8. LAPACK compatibility (lapack2flame) . 249
5.8.1. Supported routines . 250

A. FLAME Project Related Publications 259
A.1. Books . 259
A.2. Dissertations . 259
A.3. Journal Articles . 259
A.4. Conference Papers . 260
A.5. FLAME Working Notes . 262
A.6. Other Technical Reports . 265

B. License 267
B.1. BSD 3-clause license . 267

List of Contributors

A large number of people have contributed, and continue to contribute, to the FLAME project. For a
complete list, please visit

http://www.cs.utexas.edu/users/flame/

Below we list the people who have contributed directly to the knowledge and understanding that is summa-
rized in this text.

Paolo Bientinesi
The University of Texas at Austin

Ernie Chan
The University of Texas at Austin

John A. Gunnels
IBM T.J. Watson Research Center

Kazushige Goto
The University of Texas at Austin

Tze Meng Low
The University of Texas at Austin

Margaret E. Myers
The University of Texas at Austin

Enrique S. Quintana-Ort́ı
Universidad Jaume I

Gregorio Quintana-Ort́ı
Universidad Jaume I

Robert A. van de Geijn
The University of Texas at Austin

v

Chapter 1

Introduction

In past years, the FLAME project, a collaborative effort between The University of Texas at Austin and
Universidad Jaime I de Castellon, developed a unique methodology, notation, and set of APIs for deriving
and representing linear algebra libraries. In an effort to better promote the techniques characteristic to
the FLAME project, we have implemented a functional prototype library that demonstrates findings and
insights from the last decade of research. We call this library libflame.1

The primary purpose of libflame is to provide the scientific and numerical computing communities
with a modern, high-performance dense linear algebra library that is extensible, easy to use, and available
under an open source license. Its developers have published numerous papers and working notes over the last
decade documenting the challenges and motivations that led to the APIs and implementations present within
the libflame library. Most of these publications listed in Appendix A. Seasoned users within scientific and
numerical computing circles will quickly recognize the general set of functionality targeted by libflame. In
short, in libflame we wish to provide not only a framework for developing dense linear algebra solutions,
but also a ready-made library that is, by almost any metric, easier to use and offers competitive (and in
many cases superior) real-world performance when compared to the more traditional LAPACK and BLAS
libraries [9, 28, 19, 19, 18].

1.1 What’s provided

The FLAME project is excited to offer potential users numerous reasons to adopt libflame into their
software solutions.

A solution based on fundamental computer science. The FLAME project advocates a new approach
to developing linear algebra libraries. It starts with a more stylized notation for expressing loop-based linear
algebra algorithms [31, 24, 23, 38]. This notation closely resembles how matrix algorithms are naturally
illustrated with pictures. (See Figure 1.1 and Figure 1.2 (left).) The notation facilitates rigorous formal
derivation of algorithms [23, 10, 38], which guarantees that the resulting algorithms are correct.

Object-based abstractions and API. The BLAS, LAPACK, and ScaLAPACK [17] projects place back-
ward compatibility as a high priority, which hinders progress towards adopting modern software engineering
principles such as object abstraction. libflame is built around opaque structures that hide implementation
details of matrices, such as leading dimensions, and exports object-based programming interfaces to operate
upon these structures [12]. Likewise, FLAME algorithms are expressed (and coded) in terms of smaller op-
erations on sub-partitions of the matrix operands. This abstraction facilitates programming without array
or loop indices, which allows the user to avoid painful index-related programming errors altogether. Figure
1.2 compares the coding styles of libflame and LAPACK, highlighting the inherent elegance of FLAME

1Henceforth, we will typeset the name of the library in a fixed-width font, just as we typeset the names of executable
programs and scripts.

1

2 1. Introduction

Algorithm: A := Chol l blk var2(A)

Partition A→
(

ATL ATR

ABL ABR

)
where ATL is 0× 0

while m(ATL) < m(A) do
Determine block size b
Repartition

(
ATL ATR

ABL ABR

)
→

 A00 A01 A02

A10 A11 A12

A20 A21 A22


where A11 is b× b

A11 := A11 −A10AT
11 (syrk)

A21 := A21 −A20AT
10 (gemm)

A11 := Chol(A11)

A21 := A21A
−T
11 (trsm)

Continue with(
ATL ATR

ABL ABR

)
←

 A00 A01 A02

A10 A11 A12

A20 A21 A22


endwhile

Figure 1.1: Blocked Cholesky factorization (variant 2) expressed as a FLAME algorithm. Subproblems
annotated as syrk, gemm, and trsm correspond to Level-3 BLAS operations.

code and its striking resemblance to the corresponding FLAME algorithm shown in Figure 1.1. This simi-
larity is quite intentional, as it preserves the clarity of the original algorithm as it would be illustrated on a
white-board or in a publication.

Educational value. Aside from the potential to introduce students to formal algorithm derivation, FLAME
serves as an excellent vehicle for teaching linear algebra algorithms in a classroom setting. The clean ab-
stractions afforded by the API also make FLAME ideally suited for instruction of high-performance linear
algebra courses at the undergraduate and graduate level. Robert van de Geijn routinely uses FLAME in
his linear algebra and numerical analysis courses. Historically, the BLAS/LAPACK style of coding has been
used in these pedagocal settings. However, we believe that coding in that manner obscures the algorithms;
students often get bogged down debugging the frustrating errors that often result from indexing directly into
arrays that represent the matrices.

A complete dense linear algebra framework. Like LAPACK, libflame provides ready-made imple-
mentations of common linear algebra operations. The implementations found in libflame mirror many of
those found in the BLAS and LAPACK packages. However, libflame differs from LAPACK in two impor-
tant ways: First, it provides families of algorithms for each operation so that the best can be chosen for a
given circumstance [11]. Second, it provides a framework for building complete custom linear algebra codes.
We believe this makes it a more useful environment as it allows the user to quickly chose and/or prototype
a linear algebra solution to fit the needs of the application.

High performance. In our publications and performance graphs, we do our best to dispel the myth that
user- and programmer-friendly linear algebra codes cannot yield high performance. Our FLAME implemen-
tations of operations such as Cholesky factorization and triangular matrix inversion often outperform the
corresponding implementations currently available in LAPACK [11]. Figure 1.3 shows an example of the
performance increase made possible by using libflame for a Cholesky factorization, when compared to LA-
PACK. Many instances of the libflame performance advantage result from the fact that LAPACK provides
only one variant (algorithm) of most operations, while libflame provides many variants. This allows the

1.1. What’s provided 3

libflame LAPACK
FLA_Error FLA_Chol_l_blk_var2(FLA_Obj A, dim_t nb_alg)

{

FLA_Obj ATL, ATR, A00, A01, A02,

ABL, ABR, A10, A11, A12,

A20, A21, A22;

dim_t b;

int value;

FLA_Part_2x2(A, &ATL, &ATR,

&ABL, &ABR, 0, 0, FLA_TL);

while (FLA_Obj_length(ATL) < FLA_Obj_length(A))

{

b = min(FLA_Obj_length(ABR), nb_alg);

FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,

/* ************* */ /* ******************** */

&A10, /**/ &A11, &A12,

ABL, /**/ ABR, &A20, /**/ &A21, &A22,

b, b, FLA_BR);

/* -- */

FLA_Syrk(FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE,

FLA_MINUS_ONE, A10, FLA_ONE, A11);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_TRANSPOSE,

FLA_MINUS_ONE, A20, A10, FLA_ONE, A21);

value = FLA_Chol_unb_external(FLA_LOWER_TRIANGULAR, A11);

if (value != FLA_SUCCESS)

return (FLA_Obj_length(A00) + value);

FLA_Trsm(FLA_RIGHT, FLA_LOWER_TRIANGULAR,

FLA_TRANSPOSE, FLA_NONUNIT_DIAG,

FLA_ONE, A11, A21);

/* -- */

FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,

A10, A11, /**/ A12,

/* ************** */ /* ****************** */

&ABL, /**/ &ABR, A20, A21, /**/ A22,

FLA_TL);

}

return value;

}

SUBROUTINE DPOTRF(UPLO, N, A, LDA, INFO)

CHARACTER UPLO

INTEGER INFO, LDA, N

DOUBLE PRECISION A(LDA, *)

DOUBLE PRECISION ONE

PARAMETER (ONE = 1.0D+0)

LOGICAL UPPER

INTEGER J, JB, NB

LOGICAL LSAME

INTEGER ILAENV

EXTERNAL LSAME, ILAENV

EXTERNAL DGEMM, DPOTF2, DSYRK, DTRSM, XERBLA

INTRINSIC MAX, MIN

INFO = 0

UPPER = LSAME(UPLO, ’U’)

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, ’L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN

INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4

END IF

IF(INFO.NE.0) THEN

CALL XERBLA(’DPOTRF’, -INFO)

RETURN

END IF

INFO = 0

UPPER = LSAME(UPLO, ’U’)

IF(N.EQ.0)

$ RETURN

NB = ILAENV(1, ’DPOTRF’, UPLO, N, -1, -1, -1)

IF(NB.LE.1 .OR. NB.GE.N) THEN

CALL DPOTF2(UPLO, N, A, LDA, INFO)

ELSE

IF(UPPER) THEN

*********** Upper triangular case omited for purposes of fair comparison.

ELSE

DO 20 J = 1, N, NB

JB = MIN(NB, N-J+1)

CALL DSYRK(’Lower’, ’No transpose’, JB, J-1, -ONE,

$ A(J, 1), LDA, ONE, A(J, J), LDA)

CALL DPOTF2(’Lower’, JB, A(J, J), LDA, INFO)

IF(INFO.NE.0)

$ GO TO 30

IF(J+JB.LE.N) THEN

CALL DGEMM(’No transpose’, ’Transpose’, N-J-JB+1, JB,

$ J-1, -ONE, A(J+JB, 1), LDA, A(J, 1),

$ LDA, ONE, A(J+JB, J), LDA)

CALL DTRSM(’Right’, ’Lower’, ’Transpose’, ’Non-unit’,

$ N-J-JB+1, JB, ONE, A(J, J), LDA,

$ A(J+JB, J), LDA)

END IF

20 CONTINUE

END IF

END IF

GO TO 40

30 CONTINUE

INFO = INFO + J - 1

40 CONTINUE

RETURN

END

Figure 1.2: The algorithm shown in Figure 1.1 implemented with FLAME/C code (left) and Fortran-77
code (right). The FLAME/C code represents the style of coding found in libflame while the Fortran-77 code
was obtained from LAPACK.

4 1. Introduction

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

Matrix size

G
F

L
O

P
S

Cholesky factorization on 4 x Intel Dunnington with MKL 10.2

SuperMatrix + serial MKL

MKL dpotrf

FLAME + multithreaded MKL

LAPACK + multithreaded MKL

Figure 1.3: Performance of Cholesky factorization implementations measured on a 24 core Intel “Dunning-
ton” system. Theoretical peak system performance is 255 GFLOPS. libflame uses variant 3 while LAPACK
uses variant 2. For non-SuperMatrix experiments, MKL was invoked in multithreaded mode. For SuperMa-
trix experiments, MKL parallelism was disabled. Blocksizes were tuned individually for each problem size
tested.

1.1. What’s provided 5

user and/or library developer to choose which algorithmic variant is most appropriate for a given situation.
Currently, libflame relies only on the presence of a core set of highly optimized unblocked routines to
perform the small sub-problems found in FLAME algorithm codes.

Dependency-aware multithreaded parallelism. Until recently, the most common method of getting
shared-memory parallelism from LAPACK routines by simply linking to multithreaded BLAS. This low-level
solution requires no changes to LAPACK code but also suffers from sharp limitations in terms of efficiency
and scalability for small- and medium-sized matrix problems. The fundamental bottleneck to introducing
parallelism directly within many algorithms is the web of data dependencies that inevitably exists between
sub-problems. The libflame project has developed a runtime system, SuperMatrix, to detect and analyze
dependencies found within FLAME algorithms-by-blocks (algorithms whose sub-problems operate only on
block operands) [15, 16, 32, 34]. Once dependencies are known, the system schedules sub-operations to
independent threads of execution. This system is completely abstracted from the algorithm that is being
parallelized and requires virtually no change to the algorithm code, but at the same time exposes abundant
high-level parallelism. We have observed that this method provides increased performance for a range of
small- and medium-sized problems, as shown in Figure 1.3. The most recent version of LAPACK does not
offer any similar mechanism.2

Support for hierarchical storage-by-blocks. Storing matrices by blocks, a concept advocated years
ago by Fred Gustavson of IBM, often yields performance gains through improved spatial locality [6, 20, 25].
Instead of representing matrices as a single linear array of data with a prescribed leading dimension as legacy
libraries require (for column- or row-major order), the storage scheme is encoded into the matrix object.
Here, internal elements refer recursively to child objects that represent sub-matrices. Currently, libflame
provides a subset of the conventional API that supports hierarchical matrices, allowing users to create and
manage such matrix objects as well as convert between storage-by-blocks and conventional “flat” storage
schemes [34, 29].

Advanced build system. From its early revisions, libflame distributions have been bundled with a
robust build system, featuring automatic makefile creation and a configuration script conforming to GNU
standards (allowing the user to run the ./configure; make; make install sequence common to many
open source software projects). Without any user input, the configure script searches for and chooses
compilers based on a pre-defined preference order for each architecture. The user may request specific
compilers via the configure interface, or enable other non-default features of libflame such as custom
memory alignment, multithreading (via POSIX threads or OpenMP), compiler options (debugging symbols,
warnings, optimizations), and memory leak detection. The reference BLAS and LAPACK libraries provide
no configuration support and require the user to manually modify a makefile with appropriate references to
compilers and compiler options depending on the host architecture.

Windows support. While libflame was originally developed for GNU/Linux and UNIX environments,
we have in the course of its development had the opportunity to port the library to Microsoft Windows.
The Windows port features a separate build system implemented with Python and nmake, the Microsoft
analogue to the make utility found in UNIX-like environments. As of this writing, the port is still relatively
new and therefore should be considered experimental. However, we feel libflame for Windows is useable
for many in our audience. We invite interested users to try the software and, of course, we welcome feedback
to help improve our Windows support, and libflame in general.

Independence from Fortran and LAPACK. The libflame development team is pleased to offer a
high-performance linear algebra solution that is 100% Fortran-free. libflame is a C-only implementation
and does not depend on any external Fortran libraries such as LAPACK.3 That said, we happily provide
an optional backward compatibility layer, lapack2flame, that maps LAPACK routine invocations to their

2Some of the lead developers of LAPACK have independently investigated these ideas as part of a spin-off project, PLASMA
[13, 14, 7].

3In fact, besides the BLAS and the standard C libraries, libflame does not have any external dependencies—not even f2c.

6 1. Introduction

corresponding native C implementations in libflame. This allows legacy applications to start taking ad-
vantage of libflame with virtually no changes to their source code. Furthermore, we understand that some
users wish to leverage highly-optimized implementations that conform to the LAPACK interface, such as
Intel’s Math Kernel Library (MKL). As such, we allow those users to configure libflame such that their
external LAPACK implementation is called for the small, performance-senstive unblocked subproblems that
arise within libflame’s blocked algorithms and algorithms-by-blocks.

1.2 What’s not provided

While we feel that libflame is a powerful and effective tool, it is not for everyone. In this section we list
reasons you may want to avoid using libflame.

Distributed memory parallelism. libflame does not currently offer distributed memory parallelism.
Some of the FLAME project members once maintained a library called PLAPACK [8, 37], which provided a
framework for implementing dense linear algebra operations in a parallel distributed memory environment.
However, this library is no longer supported by the FLAME group. We have begun preliminary work on
rewriting PLAPACK to incorporate many of the things we’ve learned while developing the FLAME method-
ology. But until we can finish this rewrite of PLAPACK, libflame will not support parallel distributed
memory computing.

Out-of-core computation. libflame does not currently support out-of-core computation. However, the
FLAME group has published research based on results from a prototype extension to libflame [26]. While
this prototype extension is not distributed with libflame, we believe that FLASH with its the hierarchical
storage format will provide us with a relatively straightforward path to incorporating out-of-core functionality
in the future. Our colleages at Universidad Jaime I de Castellon, however, have more recent expertise in
this area. Those interested in out-of-core functionality should contact them directly.

Sparse matrix functionality. Algorithms implementated in libflame do not take advantage of sparse-
ness that may be present within a matrix, nor does it take advantage of any special structure beyond the
traditional dense matrix forms (triangular, symmetric, Hermitian), nor does it support special storage for-
mats that avoid storing the zero elements present in sparse matrices. Users looking to operate with sparse
matrices, especially those that are large, should look into more specialized software packages that leverage
the properties inherent to your application.

Banded matrix support Many routines within the BLAS and LAPACK are specially written to take
advantage of banded matrices. As with sparse matrices, these routines expect that the matrix arguments be
stored according to a special storage scheme that takes advantage of the sparsity of the matrix. Unfortunately,
libflame does not offer any storage scheme targeting banded matrices, and thus does not include any routines
that leverage such storage within the computation. Though, our colleages in Spain have reported on work
using banded matrices in algorithms-by-blocks [33].

Traditional coding style. We are quite proud of libflame and its interfaces, which we believe are much
easier to use than those of the BLAS and LAPACK. However, it’s entirely possible that switching to the
libflame API is not feasible for you or your organization. For example, if you are a Fortran programmer,
you may not have the patience or the liberty to write and use C wrappers to the libflame routines. Or,
your project may need to remain written in Fortran for reasons beyond your control. Whatever the case, we
understand and appreciate that coding style imposed by libflame may be too different for some users and
applications.

Interactive/Interpreted programming Some people require a degree of interactivity in their scientific
computing environment. Good examples of linear algebra tools that supports interpreted programming are
The MathWorks’ matlab and National Instruments’ LabVIEW MathScript. Programming with matlab

1.3. Acknowledgments 7

or LabVIEW MathScript is a great way to prototype new ideas and flesh out your algorithms before moving
them to a high-performance environment. While libflame provides many features and benefits, an inter-
preted programming environment is not one of them. If you require this feature, we encourage you to look
at matlab as well as other free alternatives, such as Octave and Sage.

Whatever the reason, we acknowledge that it may not be practical or even possible to incorporate
libflame into your software solution. We hope libflame fits your needs, but if it does not then we would
like to refer you to other software packages that you may want to consider:

• BLAS. The official reference implementation of the BLAS is available through the netlib software
repository [1]. It implements basic matrix-matrix operations such as general matrix multiply as well
as several less computationally intensive operations involving one or more vector operands. The BLAS
is freely-available software.

• LAPACK. Like the BLAS, the official reference implementation of LAPACK is available through the
netlib software repository [3]. This library implements many more sophisticated dense linear algebra
operations, such as factorizations, linear system solvers, and eigensolvers. LAPACK is freely-available
software.

• ScaLAPACK. ScaLAPACK was designed by the creators of the BLAS and LAPACK libraries to
implement dense linear algebra operations for parallel distributed memory environments. Its API is
similar to that of LAPACK and targets mostly Fortran-77 applications,though it may also be accessed
from programs written in C. ScaLAPACK is freely available software and available through the netlib
software repository [5].

• PETSc. PETSc, written and maintained by The University of Chicago, provides parallel solvers for
PDEs, and other related tools, with bindings for C, C++, Fortran, and Python [27]. PETSc is available
from the University of Chicago under a custom GNU-like license.

• MATLAB. The MathWorks’ flagship product, matlab, is a scientific and numerical programming
environment featuring a rich library of linear algebra, signal processing, and visualization functions
[36]. matlab is licensed as a commerical product.

• LabVIEW. National Instruments offers a commercial solution, LabVIEW MathScript, which is a com-
ponent of LabVIEW, that provides an interactive programming environment compatible with matlab
[30].

• Octave. GNU Octave is a free alternative to matlab, providing high-level interpreted language
functionality for scientific and numerical applications. GNU Octave is distributed under the GNU
General Public License [2].

• Sage. Sage, like Octave, is free software that provides much of the functionality of matlab, but also
targets users of Magma, Maple, and Mathematica. Sage is distributed under the GNU General Public
License [4].

We thank you for your interest in libflame and the FLAME project.

1.3 Acknowledgments

The libflame library was made possible thanks to innovative contributions from some of the top researchers
in the field of dense linear algebra, including many active members of the FLAME project. I am flattered
and grateful that, despite the fact that the library represents the hard work of all of these individuals, my
colleagues encouraged me to publish this document without them as coauthors. Their contributions are
well-documented in the many journal papers, conference proceedings, and working notes published over the
last decade. Citations for many of these publications may be found in Appendix A.

Over the years, the FLAME project and the libflame library effort have been generously funded by the
National Science Foundation grants CCF-0702714, CCF-0540926, CCF-0342369, ACI-0305163, and ACI-
0203685. In addition, Microsoft, NEC Systems (America), Inc., and National Instruments have provided
significant support. An equipment donation from Hewlett-Packard has also been invaluable.

8 1. Introduction

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

Chapter 2

Setup for GNU/Linux and UNIX

This chapter discusses how to obtain, configure, compile, and install libflamein GNU/Linux and UNIX-like
environments.

2.1 Before obtaining libflame

We encourage new users to read this section before proceeding to download the libflame source code.

2.1.1 System software requirements

Before you attempt to build libflame, be sure you have the following software tools:

• GNU/Linux or UNIX. libflame should compile under a wide variety of GNU/Linux distributions1

and also on any of the mainstream flavors of UNIX, provided that a somewhat sane development
environment is present.

• GNU tools. We strongly recommend the availability of a GNU development environment. If a full
GNU environment is not present, then at the very least we absolutely require that reasonably recent
versions of GNU make (3.79 or later) and GNU bash (2.0 or later) are installed and specified in the
user’s PATH shell environment variable.2

• A C compiler. Most of libflame is written in C, and therefore building libflame on for GNU/Linux
or UNIX requires a C (or C++) compiler.3 The GNU gcc, Intel icc, IBM xlc, and Pathscale pathcc

compilers are explicitly supported. A generic compiler named cc should work too. Later subsections
in this chapter describe how the user may specify a preferred C compiler.

• A working BLAS library. Users must link against an implementation of the BLAS in order to
use libflame. Currently, libflame functions make extensive use of BLAS routines such as dgemm()

and dsyrk() to perform subproblems that inherently occur within almost all linear algebra algorithms.
libflame also provides access to BLAS routines by way of wrappers that map object-based APIs to the
traditional Fortran-77 routine interface. Any library that adheres to the BLAS interface should work
fine. However, we strongly encourage the use of Kazushige Goto’s GotoBLAS [21, 22, 35]. GotoBLAS
provides excellent performance on a wide variety of mainstream architectures. Other BLAS libraries,

1libflame has been known to compile successfully under cygwin. However, cygwin is not an environment in which we
routinely test our software. If this is your preferred environment, we welcome you to give it a try, even if we will not be able
to provide support.

2On some UNIX systems, such as AIX and Solaris, GNU make may be named gmake while the older UNIX/BSD implemen-
tation retains the name make. In these environments, the user must be sure to invoke gmake, as the libflame build system
utilizes functionality that is present only in GNU make.

3 The libflame configuration script will probe for and query a Fortran compiler in order to detect the name mangling
conventions necessary for C and Fortran functions to call each other. If your build fails because a Fortran compiler was not
present at configure-time, please contact the libflame developers.

9

10 2. Setup for GNU/Linux and UNIX

such as ESSL (IBM), MKL (Intel), ACML (AMD), and netlib’s BLAS, have also been successfully
tested with libflame. Of course, performance will vary depending on which library is used.

The following items are not required in order to build libflame, but may still be useful to certain users,
depending on how the library is configured.

• A working LAPACK library. Most of the computationally-intensive operations implemented in
libflame are expressed as blocked algorithms or algorithms-by-blocks, both of which cast some of their
computation in terms of smaller subproblems. libflame provides optimized, low-overhead unblocked
functions to perform these small matrix computations. However, for performance reasons, some users
might want these computations to be performed instead by an external implementation of LAPACK.
See Section 2.3.1 for more information on making use of this optional feature.

• An OpenMP-aware C compiler. libflame supports parallelism for several operations via the
SuperMatrix runtime scheduling system. SuperMatrix requires either a C compiler that supports
OpenMP (1.0 or later), or a build environment that supports POSIX threads. As of this writing, the
GNU C compiler does not support OpenMP. Therefore, the user must either ensure that libflame is
configured to use a commercial OpenMP-aware compiler, or configure libflame so that SuperMatrix
uses POSIX threads.4

2.1.2 System hardware support

Over time, libflame has been tested on a wide swath of modern architectures, including but not limited to:

• x86 (Pentium, Athlon, Celeron, Duron, older Xeon series)

• x86 64 (Opteron, Athlon64, recent Xeon, Core2 series)

• ia64 (Itanium series)

• PowerPC/POWER series

Support by an architecture is primarily determined by the presence of an appropriate compiler. At configure-
time, the configure script will attempt to find an appropriate compiler for a given architecure according
to a predetermined search order for that architecture. For example, The first C compiler searched for on an
Itanium2 system is Intel’s icc. If icc is not found, then the search continues for GNU gcc . If neither icc nor
gcc is present, then the script checks for a generic compiler named cc. Table 2.1 summarizes the search order
of C compilers for some of the more common architectures supported by libflame. Here, the architecture is
identified by the canonical build system type, which is a string of three dash-separated substrings, identifying
the CPU type, vendor, and operating system of the system which is performing the build. The build system
type is determined by the helper shell script config.guess and output by configure at configure-time.

It is also possible for the user to specify the C compiler explicitly at configure-time. For more information
on this and related topics, refer to Section 2.3.1.

2.1.3 License

libflame is intellectual property of The University of Texas at Austin. Unless you or your organization
has made other arrangements, libflame is provided as free software under the 3-clause BSD license. Please
refer to Appendix B for the full text of this license.

4Whether there is an advantage in using OpenMP over POSIX threads will depend on the specific OpenMP and POSIX
implementations. However, preliminary evidence suggests that configuring SuperMatrix to derive its parallelism from OpenMP
results in slightly higher and slightly more consistent performance.

2.2. Preparation 11

Build system type C compiler search order
i386-*-* i586-*-* i686-*-* gcc icc cc

x86 64-*-* gcc icc pathcc cc

ia64-*-* icc gcc cc

powerpc*-ibm-aix* xlc

powerpc64-*-linux-gnu gcc xlc

All others gcc cc

Table 2.1: The list of compilers that are searched for as a function of build system type, which consists
three strings, separated by dashes, identifying the build system CPU type, vendor, and operating system,
where ’*’ will match any substring. The actual build system string is determined by the helper shell script
config.guess and output by configure at configure-time. Note that the search for the appropriate system
type is performed from top to bottom. Once a matching string is found, the search for each compiler/tool
is performed from left to right.

2.1.4 Source code

The libflame source code is available via the web at github.com:

http://www.github.com/flame/libflame/

We encourage users to download a copy of libflame via the git clone command, rather than a gzipped-
tarball. That way, you can update your copy of libflame (via git pull without having to download an
entirely new copy.

2.1.5 Tracking source code revisions

Each copy of libflame is named according to a human-designated version string, followed by a “patch”
number that corresponds to the number of git commits applied since that version string (or tag) was
applied. For example, version 5.1.0-15 is 15 commits newer than the commit to which the “5.1.0” tag was
first attached. Each version also has a unique SHA-1 hash, which is used when identifying versions with git.

2.1.6 If you have problems

If you encounter trouble while trying to build and install libflame, if you think you’ve found a bug, or if
you have a question not answered in this document, we invite you to post to our mailing list at:

http://groups.google.com/group/libflame-discuss

A libflame developer (or perhaps a fellow user!) will try to get back in touch with you as soon as possible.

2.2 Preparation

Download a git clone of libflame from the github website.

> git clone https://github.com/flame/libflame.git

> ls

libflame

Change into the libflame directory:

> cd libflame

12 2. Setup for GNU/Linux and UNIX

The top-level directory of the source tree should look something like this:

> ls

AUTHORS Doxyfile Makefile build docs run-conf tmp

CHANGELOG INSTALL README configure examples src windows

CONTRIBUTORS LICENSE bootstrap configure.ac play test

Table 2.2 describes each file present here. In addition, the figure lists files that are created and overwritten
only upon running configure.

2.3 Configuration

The first step in building libflame is to configure the build system by running the configure script.
libflame may be configured many different ways depending on which options are passed into configure.
These options and their syntax are always available by running configure with the --help option:

> ./configure --help

Be aware that ./configure --help lists several options that are ignored by libflame.5 The options that
are supported are listed explicitly and described in the next subsection.

2.3.1 configure options

The command line options supported by the configure script may be broken down into standard options,
which most configure scripts respond to, and libflame-specific options, which refer to functionality unique
to libflame.

The standard command line options are:

--prefix=PREFIX

This option sets the prefix variable with PREFIX, which specifies the common
installation prefix for all libflame build products.
If PREFIX does not exist, it is created. The prefix variable defaults to /usr/local.

--exec-prefix=EXECPREFIX

This option sets the exec prefix variable with EXECPREFIX, which specifies the
installation prefix for the libraries directory.
If EXECPREFIX does not exist, it is created. The exec prefix variable defaults to
$prefix.

--libdir=LIBDIR

This option sets the libdir variable with LIBDIR, which specifies the installation
directory for libraries.
If LIBDIR does not exist, it is created. The libdir variable defaults to
$exec prefix/lib.

--includedir=INCLUDEDIR

This option sets the includedir variable with INCLUDEDIR, which specifies the
installation directory for header files.
If INCLUDEDIR does not exist, it is created. The includedir variable defaults to
$prefix/include.

--help, -h

5This is due to boilerplate content that autoconf inserts into the configure script regardless of whether it is desired.

2.3. Configuration 13

File Type Description
AUTHORS peristent Credits for authorship of various sub-components of libflame .
CHANGELOG peristent A list of major changes in each major milestone release version.
CONTRIBUTORS peristent Credits for co-authors of working notes, conference papers, and journal

articles that have influenced the development of libflame.
Doxyfile peristent The configuration file for running doxygen, which we use to automat-

ically generate a map of the source tree.
INSTALL peristent Generic instructions for configuring, compiling, and installing the soft-

ware package, courtesy of the Free Software Foundation.
LICENSE peristent The file specifying the license under which the software is made avail-

able. As of this writing, libflame is available as free software under
version 2.1 of the GNU Lesser General Public License (LGPL).

Makefile peristent The top-level makefile for compiling libflame. This makefile uses the
GNU include directive to recursively include the makefile fragments
that are generated at configure-time. Therefore, it is inoperable until
configure has been run.

README peristent A short set of release notes directing the user to the libflame web
page and the libflame reference manual for more detailed information
concerning installation and usage.

bootstrap peristent A shell script used by developers to regenerate the configure script.
build peristent This directory contains auxiliary build system files and shell scripts.

These files are probably only of interest to developers of libflame,
and so most users may safely ignore this directory.

config build A directory containing intermediate architecture-specific build files.
config.log build Logs information as it is gathered and processed by configure.
config.status build A helper script invoked by configure.
config.sys type build This file is used to communicate the canonical build system type be-

tween configure and config.status helper script.
configure peristent The script used to configure libflame for compiling and installation.

configure accepts many options, which may be queried by running
./configure --help.

configure.ac peristent An input file to autoconf that specifies how to build the configure

script based on a sequence of m4 macros. This file is only of interest
to libflame developers.

docs peristent A directory containing documentation related to libflame. The La-
TeX source to the libflame reference manual resides here.

examples peristent A directory containing a few examples of libflame algorithm imple-
mentations and libflame usage.

lib build A directory containing the libraries created after compilation.
obj build A directory containing the object files created during compilation.
revision build/persistent A file containing the subversion revision number of the source code.
run-conf peristent A directory containing a wrapper script to configure that the user

may use to help them specify multiple options. The script is strictly a
convenience; some users will opt to instead invoke configure directly.

src peristent The root directory of all source code that goes into building libflame.
test peristent A monolithic test driver to test your libflame installation.
windows peristent The directory containing the Windows build system. See Chapter 3

for detailed instructions on how to configure, compile, install, and link
against a Windows build of libflame.

Table 2.2: A list of the files and directories the user can expect to find in the top-level libflame directory
along with descriptions. Files marked “peristent” should always exist while files marked “build” are build
products created by the build system. This latter group of files may be safely removed by invoking the make

target distclean.

14 2. Setup for GNU/Linux and UNIX

Display a summary of all valid options to configure. (Note that this will display
more options than libflame actually uses. Only those options described in this
section are used internally by the build system.)

--help=short

Display a summary of only those options that are specific to libflame.

--version, -V

Display libflame and autoconf version information.

--silent, --quiet, -q

Silent mode. Do not print “checking...” messages during configuration.

All command line options specific to libflame fall into two categories: those which describe a particular
feature to enable or disable, and those which instruct configure to set up the build for use with a particular
tool.

Command line options which denote features take the form --disable-FEATURE or --enable-FEATURE,
where FEATURE is a short string that describes the feature being enabled or disabled. Enabling some options
requires that an argument be specified. In these cases, the syntax takes the form of --enable-FEATURE=ARG,
where ARG is an argument specific to the feature being enabled.

Command line options which request the usage of certain tools are similar to feature options, except that
tool options always take an argument. These options take the form --with-TOOL=TOOLNAME, where TOOL
and NAME are short strings that identify the class of tool and the actual tool name, respectively.

The supported command line feature options are:

--enable-verbose-make-output

Enable verbose output as make compiles source files and archives them into
the library file. By default, configure instructs make to supress the actual
commands sent to the compilers (and to ar) and instead print out more concise
progress messages. This option is useful to developers and advanced users who
suspect that make may not be invoking the compilers correctly. Disabled by default.

--enable-static-build

Create libflame as a static library archive. Enabled by default.

--enable-dynamic-build

Create libflame as a dynamically-linked shared library. Linking an executable to
a shared library has the advantage that only one copy of the library code will ever
be loaded into memory. Disabled by default.

--enable-max-arg-list-hack

Enable a workaround for environments where the amount of memory allocated
to storing command line argument lists is too small for ar to archive all of the
library’s object files with one command. This usually is not an issue, but on some
systems the user may get an “Argument list too long” error message. In those
situations, the user should enable this option. Note: make may not be run in
parallel to build libflame when this option is enabled! Doing so will result in
undefined behavior from ar. Disabled by default.

--enable-autodetect-f77-ldflags

Enable automatic detection of any linker flags that may be needed to link against
Fortran code. These flags are useful to know about when, for example, linking
libflame to a BLAS library that was compiled with the system’s Fortran compiler.
You may need to disable this option, along with autodetection of Fortran name-
mangling, if the environment’s Fortran compiler is missing or broken. Enabled by
default.

2.3. Configuration 15

--enable-autodetect-f77-name-mangling

Enable automatic detection of the name-mangling necessary to invoke Fortran
routines from C, and C-compiled routines from Fortran. Disabling this option
causes a pre-defined default to be used, which may not work in some environments.
You may need to disable this option, along with autodetection of Fortran linker
flags, if the environment’s Fortran compiler is missing or broken. Enabled by
default.

--enable-non-critical-code

Enable code that provides non-critical functionality. This code has been identified
as unnecessary when total library size is of concern. Enabled by default.

--enable-builtin-blas

Enable code that provides a built-in implementation of the BLAS. Note that some
routines may not be optimized yet. Disabled by default.

--enable-lapack2flame

Compile and build into libflame a compatibility layer that maps LAPACK invo-
cations to their corresponding FLAME/C implementations. Note that erroneous
input parameters are reported according to libflame conventions, NOT LAPACK
conventions. That is, if libflame error checking is disabled, no error checking
is performed, and if erroneous input parameters are detected, the library aborts.
Also, if this option is enabled, then external-lapack-for-subproblems MUST
be disabled. Disabled by default.

--enable-external-lapack-for-subproblems

Enable code that causes most of the computationally-intensive functions within
libflame to compute their smallest subproblems by invoking a corresponding
(usually unblocked) LAPACK routine. Note that if this option is enabled,
lapack2flame MUST be disabled. Also, if this option is enabled, then
external-lapack-interfaces MUST also be enabled. Enabling this option
is useful when a libflame user wishes to leverage an optimized external imple-
mentation of LAPACK to speed up the subproblems that arise within libflame’s
blocked algorithms and algorithms-by-blocks. Disabled by default.

--enable-external-lapack-interfaces

Enable code that allows the user to interface with an external LAPACK implemen-
tation via object-based FLAME-like functions. Note that if this option is enabled,
an LAPACK library will be required at link-time. Disabled by default.

--enable-blas3-front-end-cntl-trees

Enable code that uses control trees6 to select a reasonable variant and blocksize
when level-3 BLAS front-ends are invoked. When disabled, the front-ends invoke
their corresponding external implementations. Note that control trees are always
used for LAPACK-level operations. Enabled by default.

--enable-multithreading=model

Enable multithreading support. Valid values for model are pthreads and openmp.
Multithreading must be enabled to access the shared memory parallelized imple-
mentations provided by SuperMatrix. Disabled by default.

--enable-supermatrix

6 Control trees are internal constructs designed to reduce code redundancy within libflame. They allow developers to
specify parameters such as blocksize, algorithmic variant, and parallel execution without changing the code that defines the
algorithm in question. They are described in detail in Chapter ??.

16 2. Setup for GNU/Linux and UNIX

Enable SuperMatrix, a dependency-aware task scheduling and parallel exe-
cution system. Note that multithreading support must also be enabled, via
--enable-multithreading, in order to activate parallelized implementations. If
SuperMatrix is enabled but multithreading is not, then SuperMatrix-aware rou-
tines will operate sequentially in a verbose “simulation” mode. Disabled by default.

--enable-gpu

Enable code that takes advantage of graphical processing units (GPUs) when
performing certain computations. If enabled, SuperMatrix must also be enabled
via --enable-supermatrix. Note that this option is experimental. Disabled by
default.

--enable-vector-intrinsics=type

Enable highly-optimized code that relies upon vector intrinsics to specify certain
operations at a very low level. Valid values for type are sse and none. Specifying
none is the same as disabling the option. Disabled by default.

--enable-memory-alignment=N

Enable code that aligns dynamically allocated memory regions at N-byte bound-
aries. Specifically, this option configures libflame to use posix memalign()

instead of malloc() for all internal memory allocation. Note: N must be a power
of two and multiple of sizeof(void*), which is usually 4 on 32-bit architectures
and 8 on 64-bit architectures. Disabled by default.

--enable-ldim-alignment

If memory alignment is requested, enable code that will increase, if necessary, the
leading dimension of libflame objects so that each matrix row or column begins
at an aligned address. Disabled by default.

--enable-optimizations

Employ traditional compiler optimizations when compiling C source code. Enabled
by default.

--enable-warnings

Use the appropriate flag(s) to request warnings when compiling C source code.
Enabled by default.

--enable-debug

Use the appropriate debug flag (usually -g) when compiling C source code.
Disabled by default.

--enable-profiling

Use the appropriate profiling flag (usually -pg) when compiling C source code.
Disabled by default.

--enable-internal-error-checking=level

Enable various internal runtime checks of function parameters and object prop-
erties to prevent functions from executing with unexpected values. Note that
this option determines the default level, which may be changed at runtime (via
FLA Check error level set()). Valid values for level are full, minimal, and
none. Enabled by default to full.

--enable-memory-leak-counter

Enable code that keeps track of the balance between calls to FLA malloc() and
FLA free(). If enabled, the counter value is output to standard error upon calling
FLA Finalize(). Note that this option determines the default status, which may
be changed at runtime (via FLA Memory leak counter set()). Disabled by default.

2.3. Configuration 17

--enable-blis-use-of-fla-malloc

Enable code that defines bli malloc() in terms of FLA malloc(). One benefit of
this is that BLIS memory allocations can be tracked, along with other libflame
memory allocations, if the memory leak counter is enabled. A second benefit is
that BLIS memory allocations can be aligned to boundaries if libflame memory
alignment is enabled. Note this option may only be set at configure-time. Enabled
by default.

--enable-goto-interfaces

Enable code that interfaces with internal/low-level functionality within GotoBLAS,
such as those symbols that may be queried for architecture-dependent blocksize
values. When this option is disabled, reasonable static values are used instead.
Note that in order to use libflame with a BLAS library other than GotoBLAS,
the user must disable this option. Disabled by default.

--enable-cblas-interfaces

Enable code that interfaces libflame’s external wrapper routines to the BLAS via
the CBLAS rather than the traditional Fortran-77 API. Disabled by default.

--enable-default-m-blocksize=mb

--enable-default-k-blocksize=kb

--enable-default-n-blocksize=nb

Enable user-defined blocksizes in the m, k, and n dimensions. These options
may be used to define the blocksizes that will be returned from blocksize query
functions when GotoBLAS interfaces are disabled. Note that these options have
no effect when GotoBLAS interfaces are enabled. Disabled by default.

--enable-portable-timer

Define the FLA Clock() timer function using clock gettime(). If that function
is not available, then getttimeofday() is used. If neither function is available,
FLA Clock() is will return a static value. By default, a portable timer is used (if it
exists).

A few command line feature options are supported by configure but refer to features that are experi-
mental and/or not yet completely implemented. Unless you are know what you are doing, you should avoid
using these options:

--enable-windows-build

Enable code that is needed for a Windows-friendly build of libflame. This entails
disabling all code specific to Linux/UNIX. (Note: this option is actually never
used in practice because the Windows build of libflame does not use configure to
begin with.) Disabled by default.

--enable-scc

Enable code that takes advantage of the SCC multicore architecture. When using
this option, enabling SuperMatrix is recommended, though not strictly required.
Note that this option is experimental. Disabled by default.

--enable-tidsp

Enable code required for libflame to run under Texas Instruments’ DSP. Note that
this option is experimental. Disabled by default.

The supported command line tool options are:

--with-cc=cc

18 2. Setup for GNU/Linux and UNIX

Variable Command line option Description
CC --with-cc=cc Use CC as the C compiler.
CFLAGS none The command line flags to use with the C compiler.

Note: Do not set this variable unless you know what
you are doing! It overrides C compiler flags that are set
by configure to correspond to libflame feature options.

EXTRA CFLAGS --with-extra-cflags=flags Use flags in addition to the C compiler flags that are
set internally by configure. Most users that need ex-
tra flags passed in to the C compiler will want to set
EXTRA CFLAGS instead of CFLAGS.

AR --with-ar=ar Use AR to create and fill static library archives.
RANLIB --with-ranlib=ranlib Use RANLIB to generate the index to the static library

archive. Note: In modern environments, the functional-
ity of ranlib has been superceded by ar; GNU ranlib

is equivalent to running ar -s.
FIND none The find utility is needed by the clean targets defined

in the Makefile.
XARGS none xargs, like find , is needed by the clean targets de-

fined in the Makefile.

Table 2.3: A list of the environment variables supported by configure. Those environment variables which
have corresponding command line options are listed with entries in the middle column. Note: Environment
variables always override their corresponding command line option, if one exists, and provided that it is
passed in at configure-time.

Search for and use a C compiler named cc. If cc is not found, then use the first
compiler found from the default search list for the detected build architecture.

--with-extra-cflags=flags

When compiling C code, use the flags in flags in addition to the flags that configure
would normally use. This is useful when the user wants some extra flags passed to
the compiler but does not want to manually set the CFLAGS environment variable
and thus override all of the default compiler flags. Note: Be sure to use quotations
if the flags string contains spaces.

--with-ar=ar

Search for and use a library archiver named ar. If ar is not found, then
use the first library archiver found from the default search list for the detected
build architecture. Note: the library archiver search list usually consists only of ar.

--with-ranlib=ranlib

Search for and use a library archive indexer named ranlib. If ranlib is not found,
then use the first library archiver found from the default search list for the detected
build architecture. Note: the library archiver search list usually consists only of
ranlib.

In addition to specifying tools via command line options, the user may alternately make the same re-
quests via environment variables. Environment variables, if they are set, always override their corresponding
command line options. configure also supports a few related environment variables which do not have an
anologous command line option.

Table 2.3 lists the supported environment variables and their corresponding tool options, if one exists.

2.3. Configuration 19

2.3.2 Running configure

The simplest way to run configure is to invoke it explicitly on the command line, followed by any of the
various options described in the previous subsection.

> ./configure --enable-supermatrix --enable-multithreading=pthreads --disable-internal-error-checking

Alternatively, the user may invoke configure indirectly through a convenient wrapper script, run-configure.sh.
This script contains an invocation of configure along with nearly all of the default configure options. To
specify non-default options, the user can simply edit the script and then invoke it from the top-level directory,
just as he would for configure.

> ./run-conf/run-configure.sh

The benefit of using run-configure.sh is twofold. First, the user has a clear and concise way of reviewing
the options passed into configure. This information is automatically output to config.log; however, in
order to recover this information the user must sift through many lines of logging output, which tends to
be more cumbersome. Second, the user can easily re-configure libflame with slightly different options by
simply editing run-configure.sh and then re-running the script.

The primary purpose of running configure is to provide make with some of the information it needs
in order to begin compiling libflame. As configure searches for and checks various parts of the build
environment, it echoes its progress to standard output. The following is an example of a snippet of such
output:

> ./run-conf/run-configure.sh

checking build system type... i686-pc-linux-gnu

checking host system type... i686-pc-linux-gnu

checking for GNU make... make

checking for GNU bash... bash

checking whether user requested a specific C compiler... no

configure: CC environment variable is set to gcc, which will override --with-cc option and default search

list for C compiler.

checking for C compiler default output file name... a.out

checking whether the C compiler works... yes

checking whether we are cross compiling... no

checking for suffix of executables...

checking for suffix of object files... o

checking whether we are using the GNU C compiler... yes

checking whether gcc accepts -g... yes

configure has another purpose, though: to create makefile fragments for each directory in the source
tree. These makefile fragments are included recursively by the top-level Makefile and give make access to the
source files which reside throughout the source tree.7 The makefile fragments are all named .fragment.mk,
and thus they are hidden from normal directory viewing.

Once configure has completed, it invokes a secondary script, post-configure.sh, to print out a sum-
mary of the configuration process. Please review this summary and confirm that libflame has been config-
ured as intended.

There is one section of the configuration summary that you should pay special attention to. If autode-
tection of Fortran name-mangling was enabled, at the end of the summary there will be output that looks
like:

7 The idea behind generating recursively-includable makefile fragments at configure-time is that these fragments will often
change when files and directories are added, moved, or deleted by libflame developers, and thus it is much more convenient
for them to be generated automatically than to be stored and maintained within the source code repository.

20 2. Setup for GNU/Linux and UNIX

Autodetect Fortran linker flags................. : yes

Fortran linker flags......................... : -L/lusr/opt/gcc-4.2.2/lib/gcc/i686-pc-linux-gnu/4.2.2

-L/lusr/opt/gcc-4.2.2/lib/gcc/i686-pc-linux-gnu/4.2.2/../../.. -lgfortranbegin -lgfortran -lm

Autodetect Fortran name-mangling................ : yes

Unmangled name............................... : foobar

Mangled name................................. : foobar

Installation directories

prefix....................................... : /usr/local

exec_prefix.................................. : $prefix

libraries will be installed in............... : $exec_prefix/lib

header files will be installed in............ : $prefix/include

Configuration complete!

NOTE: Autodetection of Fortran linker flags was enabled. The configure

script thinks that the flags listed above are necessary to successfully

link a program to Fortran object code. If your program uses any Fortran

libraries, you will probably need to link with these flags.

You may now run ’make’ to build all libflame libraries and then ’make install’

to install the libraries.

The purpose of this note is to inform the user of Fortran linker flags8 that may be needed in order to
successfully link libflame and your application against Fortran code, potentially including the BLAS or
LAPACK libraries. Sometimes, these flags are not necessary, but it is safer to always use them. Please
see Section 2.6 for further instructions on using these flags at link-time. In the meantime, there is no need
to copy and save these flags to a separate file. You may view the flags detected by the previous run of
configure at any time by opening the post-configure.sh script in your favorite file editor or viewer. The
post-configure.sh script resides in the subdirectory of config that is identified by the build system string
detected by configure.

> ls -l config/i686-unknown-linux-gnu/post-configure.sh

-rwxr--r-- 1 field dept 5861 Nov 14 13:35 config/i686-pc-linux-gnu/post-configure.sh

2.4 Compiling

After configure has run, the user may proceed to building the library. The simplest way to do this is to
just run make:

> make

This is actually shorthand for make all. That is, it tells make to invoke the all target, which in turn invokes
the libs target. Invoking the libs target compiles and archives the library. Table 2.4 lists the most useful
make targets defined in the libflame Makefile.

As make performs individual compiles individual source files into object files, it will output progress
information. By default, this appears as:

Compiling src/base/flamec/main/FLA_Blocksize.c

Compiling src/base/flamec/main/FLA_Check.c

8 The flags shown were detected when libflame was configured to use Intel compilers in an i686-unknown-linux-gnu build
environment that happens to provide both Intel and GNU compilers. Oftentimes, post-configure.sh will display link flags
that appear to accomodate linking with two different compiler packages. In our experience, we’ve found that these extraneous
flags do not interfere with the compiler at link-time.

2.4. Compiling 21

Target Function
all Invoke the libs target.
check Verify that configure has been run.
libs Invoke the check target and then build the libflame and libla-

pack2flame library archives.
install Invoke the libs target and then copy the library archives and header

files to their respective lib and include subdirectories of the install
prefix directory, which is $HOME/flame by default. Also create sym-
bolic links (with ln -s) to the library files and include subdirectory
so that the symbolic links do not contain the architecture or version
strings.

install-without-symlinks Similar to install except that no symbolic links are installed.
clean Remove all object files and previously-built library archives from the

obj and lib directories for the current build system only. (Recall
that the curerent build system is written to config.sys type.) Build
products built for other systems will not be touched.

cleanmk Remove all makefile fragments from the source tree.
distclean Invoke clean, cleanmk , and then remove all other intermediate build

files and directories that are created either by configure or one of the
autotools such as autoconf.

send-thanks Use mail to send the libflame developers a short thank-you message.

Table 2.4: A list of “phony” make targets defined in the libflame Makefile. Note that not all targets
guarantee that action will take place. Most targets will not fire if make determines that the target is already
up-to-date. For example, invoking the clean target will not remove any object files if they do not exist.

Compiling src/base/flamec/main/FLA_Error.c

Compiling src/base/flamec/main/FLA_File.c

Compiling src/base/flamec/main/FLA_Init.c

Compiling src/base/flamec/main/FLA_Lock.c

Compiling src/base/flamec/main/FLA_Memory.c

Compiling src/base/flamec/main/FLA_Misc.c

Compiling src/base/flamec/main/FLA_Obj.c

If libflame was configured with --enable-verbose-make-output, then the output will show the actual
compiler commands being executed.

2.4.1 Parallel make

libflame has been known to take a while to build, especially on systems with slow processors and/or slow
compilers. If you are performing the build on an SMP or multicore system, then you may parallelize the
compilation by using the -j n option to make. This option tells make to perform up to n tasks in parallel.
In the following example, we request that make avail itself to four-way parallelism.

> make -j4

The n argument should be set to a reasonable value, such as the number of cores or processors on the system.
Be aware that this may not necessarily speed up the build process if the build system has an I/O bottleneck,
such as a slow network-mounted filesystem.

22 2. Setup for GNU/Linux and UNIX

2.5 Installation

After make has successfully completed, the libflame library files reside in a subdirectory of the lib directory.
The exact subdirectory name depends on the build system type.

> ls -l lib/i686-unknown-linux-gnu/

total 33872

-rw-r--r-- 1 field dept 22548036 Nov 14 13:45 libflame.a

-rwxr-xr-x 1 field dept 12060827 Nov 14 13:45 libflame.so

lrwxrwxrwx 1 field dept 11 Nov 14 13:45 libflame.so.1 -> libflame.so

In this example, libflame was built for an i686 system with a build system type of i686-unknown-linux-gnu,
and so the library files reside in the directory lib/i686-unknown-linux-gnu.

At this point, you may optionally use the install target to copy the library and header files to a more
permanent location.

> make install

Installing libflame.a into /usr/local/lib/

Installing libflame.so.1.0.0 into /usr/local/lib/

Installing symlink libflame.so into /usr/local/lib/

Installing symlink libflame.so.1 into /usr/local/lib/

Installing FLAME.h into /usr/local/include/

Here, we can see the library and header files were moved into the default subdirectories of the user’s home
directory. Notice that the libraries and include directory are renamed to reflect the build architecture and
the revision number.

> ls -l /usr/local/lib/libflame.*

-rw-r--r-- 1 field dept 50142282 Apr 15 15:57 /usr/local/lib/libflame.a

lrwxrwxrwx 1 field dept 17 Apr 15 15:57 /usr/local/lib/libflame.so -> libflame.so.1.0.0

lrwxrwxrwx 1 field dept 17 Apr 15 15:57 /usr/local/lib/libflame.so.1 -> libflame.so.1.0.0

-rw-r--r-- 1 field dept 22773792 Apr 15 15:57 /usr/local/lib/libflame.so.1.0.0

[

> ls -l /usr/local/include/FLAME.*

-rw-r--r-- 1 field dept 1005143 Apr 15 15:57 FLAME.h

Now that libflame has been installed, you are ready to use it!

2.6 Linking against libflame

Since you are building libflame, you probably wish to use it in your application. This section will show
you how to link libflame with your existing application.

Let’s assume that you’ve installed libflame to the default location in /usr/local. Let’s also assume
that you invoked the install target (and not the install-without-symlinks target), giving you shorthand
symbolic links to both libflame and the directory containing header files.

In general, you should make the following changes to your application build process:

• Add the libflame header directory to the include path of your compiler. Usually, this is
done by with the -I compiler option. For example, if you configured libflame to use /usr/local as
the install prefix, then you would add -I/usr/local/include to the command line when invoking the
compiler. Strictly speaking, this is only necessary when compiling source code files that use libflame

symbols or APIs, but it is generally safe to use when compiling all of your application’s source code.

• Add libflame to the link command that links your application. If you only wish to use the
native libflame API, then you only need to add libflame.a to your link command. However, note
that libflame.a must appear in front of the LAPACK and BLAS libraries. This is because the linker

2.6. Linking against libflame 23

only searches for symbols in the “current” archive and those that appear further down in the link
command. Placing libflame after LAPACK or the BLAS will result in undefined symbol errors at
link-time.

• Use the recommended linker flags detected by configure. This topic was previously alluded
to toward the end of Section 2.3.2. It is often the case that you must add various linker flags to the
link command in order to properly link your application with libflame. This is usually the result of
the compilers embedding certain low-level functions into the object code. These functions may only
be resolved at link-time if the library in which they are defined is also provided to the linker. The list
of linker flags that you will need is displayed when configure finished and exits. After configure is
run, you may also find these linker flags in the post-configure.sh script, as described near the end
of Section 2.3.2.

Now let’s give a concrete example of these changes. Suppose you’ve been building your application with
a Makefile that looks something like:

SRC_PATH := .

OBJ_PATH := .

INC_PATH := .

LIB_HOME := $(HOME)

BLAS_LIB := $(LIB_HOME)/lib/libblas.a

LAPACK_LIB := $(LIB_HOME)/lib/liblapack.a

CC := icc

LINKER := $(CC)

CFLAGS := -g -O2 -Wall -I$(INC_PATH)

LDFLAGS := -lm

MYAPP_OBJS := main.o file.o util.o proc.o

MYAPP_BIN := my_app

$(OBJ_PATH)/%.o: $(SRC_PATH)/%.c

$(CC) $(CFLAGS) -c $< -o $@

$(MYAPP): $(MYAPP_OBJS)

$(LINKER) $(MYAPP_OBJS) $(LDFLAGS) $(LAPACK_LIB) $(BLAS_LIB) -o $(MYAPP_BIN)

clean:

rm -f $(MYAPP_OBJS) $(MYAPP_BIN)

To link against libflame , you should change your Makefile as follows:

SRC_PATH := .

OBJ_PATH := .

INC_PATH := .

LIB_HOME := $(HOME)

BLAS_LIB := $(LIB_HOME)/lib/libblas.a

LAPACK_LIB := $(LIB_HOME)/lib/liblapack.a

FLAME_HOME := /usr/local

FLAME_INC := /usr/local/include

FLAME_LIB := /usr/local/lib/libflame.a

CC := icc

LINKER := $(CC)

CFLAGS := -g -O2 -Wall -I$(INC_PATH) -I$(FLAME_INC)

LDFLAGS := -L/opt/intel/fc/em64t/10.0.026/lib

LDFLAGS += -L/usr/lib/gcc/x86_64-pc-linux-gnu/3.4.6/

LDFLAGS += -L/usr/lib/gcc/x86_64-pc-linux-gnu/3.4.6/../../../../lib64

LDFLAGS += -lifport -lifcore -limf -lsvml -lm -lipgo -lirc -lirc_s -ldl

24 2. Setup for GNU/Linux and UNIX

MYAPP_OBJS := main.o file.o util.o proc.o

MYAPP_BIN := my_app

$(OBJ_PATH)/%.o: $(SRC_PATH)/%.c

$(CC) $(CFLAGS) -c $< -o $@

$(MYAPP): $(MYAPP_OBJS)

$(LINKER) $(MYAPP_OBJS) $(LDFLAGS) $(FLAME_LIB) $(LAPACK_LIB) $(BLAS_LIB) -o $(MYAPP_BIN)

clean:

rm -f $(MYAPP_OBJS) $(MYAPP_BIN)

The changes appear in red.
First, we define the locations of libflame and the libflame header directory.
Second, we include the location of the libflame headers to the compilers’ command line options so that

the C compiler will be able to perform type checking against libflame declarations and prototypes.
Third, we add the linker flags to the LDFLAGS variable so that the linker can find any auxiliary system

libraries that might be needed in order to link your application with the object code present in libflame.
Finally, we add the libflame library to the link command, making sure to insert it before the LAPACK

and BLAS libraries.

2.6.1 Linking with the lapack2flame compatibility layer

The previous section demonstrated how to modify a hypothetical makefile to link a pre-existing application to
libflame. However, some users have applications which use LAPACK interfaces and wish to use libflame

without chaning their application code. This may be accomplished by configuring libflame to include the
lapack2flame compatibility layer. When this option is provided at configure-time, libflame is built to
include interfaces that map conventional LAPACK routine invocations to native FLAME/C function calls.

For more information about the routines supported by lapack2flame , refer to Section 5.8.

Chapter 3

Setup for Microsoft Windows

This chapter discusses how to obtain, configure, compile, and install libflame under Microsoft Windows.

3.1 Before obtaining libflame

We encourage new users to read this section before proceeding to download the libflame source code.

3.1.1 System software requirements

Before you attempt to build libflame, be sure you have the following software tools:

• Microsoft Windows XP or later. At this time we have tested libflame under Windows XP and
Windows 7. We have not yet been able to test the software under Windows Vista, though we suspect
it would compile, link, and run just fine.

• A C/C++ compiler. Most of libflame is written in C, and therefore building libflame on Windows
requires a C (or C++) compiler. The build system may be configured to use either the Intel C/C++
compiler or the Microsoft C/C++ compiler. However, another compiler can be substituted by tweaking
the definitions file included into the main makefile.

• nmake. libflame for Windows requires the Microsoft Program Maintenance Utility, nmake. nmake

is a command line tool similar to GNU make that allows developers to use makefiles to specify how
programs and libraries should be built. This utility is included with the Microsoft Visual Studio
development environment.

• Python. Certain helper scripts within the Windows build system are written in Python, and therefore
the user must have Python installed in the build environment in order to run the build libflame. We
recommend a recent version, though version 2.6 or later should work fine.

• A working BLAS library. Users must link against an implementation of the BLAS in order to use
libflame. Currently, libflame functions make extensive use of BLAS routines such as dgemm() and
dsyrk() to perform subproblems that inherently occur within almost all linear algebra algorithms.
When configured accordingly, libflame also provides direct access to BLAS routines by way of wrap-
pers that map object-based APIs to traditional Fortran-77 routine interfaces. Any library that adheres
to the BLAS interface should work fine. On Windows, libflame developers often use Intel’s MKL,
which performs well and is included with the Intel C/C++ compiler suite.

The following items are not required in order to build libflame, but may still be useful to certain users,
depending on how the library is configured.

• A working LAPACK library. Most of the computationally-intensive operations implemented in
libflame are expressed as blocked algorithms or algorithms-by-blocks, both of which cast some of their

25

26 3. Setup for Microsoft Windows

computation in terms of smaller subproblems. libflame provides optimized, low-overhead unblocked
functions to perform these small matrix computations. However, for performance reasons, some users
might want these computations to be performed instead by an external implementation of LAPACK.
See Section 2.3.1 for more information on making use of this optional feature.

• An OpenMP-aware C compiler. libflame supports parallelism for several operations via the
SuperMatrix runtime scheduling system. SuperMatrix requires either a C compiler that supports
OpenMP (1.0 or later), or a build environment that supports POSIX threads. POSIX threads support
is not shipped with Microsoft Windows. However, as of this writing, both the Microsoft and Intel
C/C++ compilers support OpenMP. Therefore, the user must either ensure that libflame is configured
to use an OpenMP-aware compiler.

3.1.2 System hardware support

Since libflame for Windows is still relatively new, we have not had the time or opportunity to test it
on many hardware architectures. We suspect it should compile and run fine on any of the modern Intel
architectures, including traditional 32-bit x86 architectures as well as newer 64-bit em64t systems. Other
architectures, such as ia64 systems, may work, but they are untested as of this writing.

3.1.3 License

libflame is intellectual property of The University of Texas at Austin. Unless you or your organization
has made other arrangements, libflame is provided as free software under the 3-clause BSD license. Please
refer to Appendix B for the full text of this license.

3.1.4 Source code

The libflame source code is available via the web at github.com:

http://www.github.com/flame/libflame/

We encourage users to download a copy of libflame via the git clone command, rather than a gzipped-
tarball. That way, you can update your copy of libflame (via git pull without having to download an
entirely new copy.

3.1.5 Tracking source code revisions

Each copy of libflame is named according to a human-designated version string, followed by a “patch”
number that corresponds to the number of git commits applied since that version string (or tag) was
applied. For example, version 5.1.0-15 is 15 commits newer than the commit to which the “5.1.0” tag was
first attached. Each version also has a unique SHA-1 hash, which is used when identifying versions with git.

3.1.6 If you have problems

If you encounter trouble while trying to build and install libflame, if you think you’ve found a bug, or if
you have a question not answered in this document, we invite you to post to our mailing list at:

http://groups.google.com/group/libflame-discuss

A libflame developer (or perhaps a fellow user!) will try to get back in touch with you as soon as possible.

3.2 Preparation

Download the .zip package from the website and then unzip the the source code.

3.2. Preparation 27

C:\field\temp>dir

Volume in drive C has no label.

Volume Serial Number is B4E3-D9FC

Directory of C:\field\temp

12/01/2009 01:03 PM <DIR> .

12/01/2009 01:03 PM <DIR> ..

12/01/2009 01:04 PM <DIR> libflame-5.1.0

12/01/2009 01:02 PM 5,324,397 libflame-5.1.0.zip

1 File(s) 5,324,397 bytes

3 Dir(s) 85,294,235,648 bytes free

Change into the libflame-5.1.0 directory:

C:\field\temp>cd libflame-5.1.0

The top-level directory of the source tree should look something like this:

C:\field\temp\libflame-5.1.0>dir

Volume in drive C has no label.

Volume Serial Number is B4E3-D9FC

Directory of C:\field\temp\libflame-5.1.0

12/01/2009 01:04 PM <DIR> .

12/01/2009 01:04 PM <DIR> ..

12/01/2009 01:03 PM 893 AUTHORS

12/01/2009 01:03 PM 91 bootstrap

12/01/2009 01:03 PM <DIR> build

12/01/2009 01:03 PM 5,836 CHANGELOG

12/01/2009 01:03 PM 293,036 configure

12/01/2009 01:03 PM 13,853 configure.ac

12/01/2009 01:03 PM 2,329 CONTRIBUTORS

12/01/2009 01:03 PM <DIR> docs

12/01/2009 01:03 PM 50,468 Doxyfile

12/01/2009 01:03 PM <DIR> examples

12/01/2009 01:03 PM 9,478 INSTALL

12/01/2009 01:03 PM 26,420 LICENSE

12/01/2009 01:03 PM 12,983 Makefile

12/01/2009 01:03 PM 1,216 README

12/01/2009 01:03 PM 5 revision

12/01/2009 01:03 PM <DIR> run-conf

12/01/2009 01:04 PM <DIR> src

12/01/2009 01:04 PM <DIR> test

12/01/2009 01:04 PM <DIR> tmp

12/01/2009 01:04 PM <DIR> windows

12 File(s) 416,608 bytes

10 Dir(s) 85,294,235,648 bytes free

This is the top-level directory for the default GNU/Linux and UNIX builds.1 However, since we are building
libflame for Windows, we should focus on the windows subdirectory.

C:\field\temp\libflame-5.1.0>cd windows

C:\field\temp\libflame-5.1.0\windows>dir

Volume in drive C has no label.

Volume Serial Number is B4E3-D9FC

1Table 2.2 describes the files present in the top-level GNU/Linux and UNIX build directory.

28 3. Setup for Microsoft Windows

Directory of C:\field\temp\libflame-5.1.0\windows

12/01/2009 01:04 PM <DIR> .

12/01/2009 01:04 PM <DIR> ..

12/01/2009 01:04 PM <DIR> build

12/01/2009 01:04 PM 2,667 configure.cmd

12/01/2009 01:04 PM 4,057 gendll.cmd

12/01/2009 01:04 PM 434 linkargs.txt

12/01/2009 01:04 PM 452 linkargs64.txt

12/01/2009 01:04 PM 11,847 Makefile

12/01/2009 01:04 PM 5 revision

6 File(s) 19,462 bytes

3 Dir(s) 85,294,235,648 bytes free

Table 3.1 describes each file present here. In addition, the figure lists files that are created and overwritten
only upon running configure.cmd.

3.3 Configuration

The first step in building libflame for Windows is to set the configuration options.
The next three sections describe how to build libflame as a static library. Please see Section 3.6 for

supplemental instructions on building a dynamically-linked library.
The bulk of the configuration options are specified in the file build\FLA config.h.2 The options cor-

respond to C preprocessor macros. If a macro is commented out, the feature is disabled, otherwise it is
enabled. Each macro is also preceeded with a comment containing a brief description of its corresponding
feature. Full documentation for each feature macro in build\FLA config.h may be found in Section 2.3.1.

There is a single configuration option that must be set in the build\defs.mk:

• Verboseness. libflame for Windows may be compiled in verbose mode, in which actual commands
are echoed to the command line instead of the more consise output that the user sees by default. In
order to compile in verbose mode, the variable VERBOSE must be defined. Thus, you may enable verbose
mode by uncommenting the following line:

VERBOSE = 1

This feature is disabled by default.

3.3.1 IronPython

Users of IronPython will need to manually change configure.cmd in order for the script to run correctly.
If you are relying on IronPython as your Python implementation, edit the configure.cmd file and change
the following lines:

set GEN_CHECK_REV_FILE=.\build\gen-check-rev-file.py

set GATHER_SRC=.\build\gather-src-for-windows.py

set GEN_CONFIG_FILE=.\build\gen-config-file.py

to:

set GEN_CHECK_REV_FILE=ipy .\build\gen-check-rev-file.py

set GATHER_SRC=ipy .\build\gather-src-for-windows.py

set GEN_CONFIG_FILE=ipy .\build\gen-config-file.py

Also, be sure that the PATH environment variable is set to contain the path to your IronPython installation.

2Unlike in the GNU/Linux build system, the user must set these options manually. We apologize for the inconvenience.

3.3. Configuration 29

File Type Description
Makefile persistent The top-level makefile for compiling libflame under Microsoft

Windows. This makefile is written for Microsoft’s Program Main-
tenance Utility, nmake. It may only be run after configure.cmd is
run.

build persistent This directory contains auxiliary build system files and scripts.
These files are probably only of interest to developers of libflame,
and so most users may safely ignore this directory.

config build A directory containing intermediate build files whose contents de-
pend on how libflame was configured.

configure.cmd persistent The script used to prepare the Windows build environment for
compiling libflame. configure.cmd has multiple required argu-
ments, which are explained when configure.cmd is run with no
arguments (or the wrong number of arguments).

dll build A directory containing the dynamic library files created after com-
pilation.

gendll.cmd persistent The script used to generate a dynamically-linked library and asso-
ciated files from a list of object files. It is meant to be invoked by
nmake and so normal users should never need to invoke it manually.

include build A temporary directory containing copies of the source header files
gathered from the top-level source directory tree.

lib build A directory containing the static library file created after compila-
tion.

nmake-cc.log build A file capturing the standard output of the C compiler.
nmake-fc.log build A file capturing the standard output of the Fortran compiler.
nmake-copy.log build A file capturing the standard output of the copy command line

utility.
linkargs.txt persistent A list of compiler arguments used by gendll.cmd when building a

dynamically-linked library (DLL). This list includes link options,
libraries, and library paths. For more details on what this file
should contain and in what ways it should be customized by the
user, refer to Section 3.3.2.

linkargs64.txt persistent Similar to linkargs.txt, but for use when generating 64-bit object
code. To use this file to generate a 64-bit DLL, simply rename this
file to linkargs.txt before invoking the dll target. The user
may also use the file contents as a reference when determining the
compiler arguments needed to link an application against a static
64-bit build of libflame.

obj build A directory containing the object files created during compilation.
revision build/persistent A file containing the subversion revision number of the source code.
src build A temporary directory containing copies of the source code files

gathered from the top-level source directory tree.

Table 3.1: A list of the files and directories the user can expect to find in the windows build directory
along with descriptions. Files marked “persistent” should always exist while files marked “build” are build
products created by the build system. This latter group of files may be safely removed by invoking the nmake
target distclean.

30 3. Setup for Microsoft Windows

Argument Accepted Values Consequence
architecture string any string This string is inserted into the filename of the final library.

It has no effect on how libflame is built.
build type debug Enables debugging symbols and disables all compiler opti-

mizations.
release Disables debugging symbols and enables maximum com-

piler optimizations.
C compiler string icl Compile C source code with the Intel C/C++ compiler,

icl. Also, if a DLL is built, use icl to perform the linking.
cl Compile C source code with the Microsoft C/C++ com-

piler, cl. Also, if a DLL is built, use cl to perform the
linking.

Table 3.2: The arguments expected by configure.cmd.

3.3.2 Running configure.cmd

Once all configuration options are set, the user may run the configure.cmd script. The configure.cmd

script takes three mandatory arguments, which are described in Table 3.2. Usage information can also be
found by running configure.cmd with no arguments.

The output from running configure.cmd should look something like:

C:\field\temp\libflame-5.1.0\windows>.\configure.cmd x64 debug icl

.\configure.cmd: Checking/updating revision file.

gen-check-rev-file.py: Found export. Checking for revision file...

gen-check-rev-file.py: Revision file found containing revision string 5.1.0". Export is valid snapshot!

.\configure.cmd: Gathering source files into local flat directories.

.\configure.cmd: Creating configure definitions file.

.\configure.cmd: Configuration and setup complete. You may now run nmake.

Here, we invoked the configure.cmd script with the “x64” architecture string, requested that debugging
be enabled (and optimizations be disabled), and specified icl as the C compiler to use for compilation. The
architecture string will be inserted into the library filename to help the user distinguish between any other
subsequent builds.

The configure.cmd script first checks whether the revision file needs updating.3 Then, a helper script
gathers the source code from the primary source tree and places copies within a “flat” directory structure
inside of a new src subdirectory. Header files are copied into a new include subdirectory. Finally, a
config.mk makefile fragment is generated with various important definitions which will be included by the
main nmake makefile.

Before proceeding to run nmake, the user must execute any compiler environment scripts that may be
necessary in order to run the compiler from the command line. For example, the Intel C/C++ compiler
typically includes a script named which allows the user to invoke the icl compiler command from the
Windows shell prompt. Note that this step, wherein the user executes any applicable environment scripts,
must be performed sometime before executing nmake.

3.4 Compiling

After running configure.cmd and ensuring the compilers are operational from the command line, you may
run nmake . Running nmake with no target specified causes the all target to be invoked implicitly. Presently,
the all target causes only the static library to be built.

3If the user is working with a checked-out working copy from the libflame subversion repository, the script will update the
file with the latest revision based on the revision specified within the .svn\entries file in the top-level windows directory.

3.4. Compiling 31

Target Function
all Invoke the lib target.
lib Build libflame as a static library.
dll Build libflame as a dynamically-linked library.
install Invoke the install-lib and install-headers targets.
install-lib Invoke the lib target and then copy the library file to the lib subdirectory of the

libflame install path specified in the Makefile.
install-dll Invoke the dll target and then copy the library files to the dll subdirectory of the

libflame install path specified in the Makefile.
install-headers Copy the libflame header files to the install path specified in Makefile.
help Output help and usage information.
clean Invoke clean-log and clean-build targets.
clean-log Remove any log files present.
clean-config Remove all products of configure.cmd. Namely, remove the config, include, and

src directories. Note that invoking the clean-config target will require the user
to run configure.cmd again before being able to run any other nmake target.

clean-build Remove all products of the compilation portion of the build process. Namely, re-
move the obj, lib, and dll directories.

distclean Invoke clean-log, clean-config, and clean-build targets.

Table 3.3: A list of useful nmake targets defined in the Makefile for building libflame for Windows. Note
that not all targets guarantee that action will take place. Most targets will not fire if nmake determines that
the target is already up-to-date. For example, invoking the clean-build target will not remove any object
files if they do not exist.

C:\field\temp\libflame-5.1.0\windows>nmake

Table 3.3 lists the most useful nmake targets defined in the Makefile that resides in the windows directory.
As nmake compiles individual source files into object files, it will output progress information. By default

(ie: with verbose output disabled), this appears as:

C:\field\temp\libflame-5.1.0\windows>nmake

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01

Copyright (C) Microsoft Corporation. All rights reserved.

nmake: Creating .\obj\flamec\x64\debug directory

nmake: Compiling .\src\flamec\bl1_amax.c

nmake: Compiling .\src\flamec\bl1_asum.c

nmake: Compiling .\src\flamec\bl1_axpy.c

nmake: Compiling .\src\flamec\bl1_axpymt.c

nmake: Compiling .\src\flamec\bl1_axpysmt.c

nmake: Compiling .\src\flamec\bl1_axpysv.c

nmake: Compiling .\src\flamec\bl1_axpyv.c

nmake: Compiling .\src\flamec\bl1_check.c

nmake: Compiling .\src\flamec\bl1_conjm.c

nmake: Compiling .\src\flamec\bl1_conjmr.c

nmake: Compiling .\src\flamec\bl1_conjv.c

When compilation is complete, the library will be archived. The output will appear as:

nmake: Creating .\lib\x64\debug directory

nmake: Creating static library .\lib\x64\debug\libflame-x64-5.1.0.lib

32 3. Setup for Microsoft Windows

As you can see, the “x64” architecture string (provided at configure-time) and “5.1.0” revision string were
inserted into the final library name. libflame is still under heavy development and undergoes frequent
changes, and so the revision string is helpful for obvious reasons. Recall that the architecture string is
completely arbitrary and has no effect on how the library gets built. However, it should be set to something
reasonable to help you remember which environment was used to compile libflame.

3.5 Installation

Upon creation, the static library file resides in a subdirectory of the lib directory, depending on the archi-
tecture and build type strings given to configure.cmd.

C:\field\temp\libflame-5.1.0\windows>dir lib\x64\debug

Volume in drive C has no label.

Volume Serial Number is B4E3-D9FC

Directory of C:\field\temp\libflame-5.1.0\windows\lib\x64\debug

12/01/2009 01:19 PM <DIR> .

12/01/2009 01:19 PM <DIR> ..

12/01/2009 01:19 PM 45,800,190 libflame-x64-5.1.0.lib

1 File(s) 45,800,190 bytes

2 Dir(s) 85,181,444,096 bytes free

Once library has been built, it may be copied out manually for use by the application developer. Alter-
natively, the user may specify an installation directory in the build\defs.mk file by setting the following
variable:4

INSTALL_PREFIX = c:\field\lib

After this variable is set, the nmake install target may be invoked. This results in the static library being
built, if it was not already, and then copied to its destination directory, specified by the INSTALL PREFIX

nmake variable. The install target also copies the libflame header files.

C:\field\temp\libflame-5.1.0\windows>nmake install

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01

Copyright (C) Microsoft Corporation. All rights reserved.

nmake: Installing .\lib\x64\debug\libflame-x64-5.1.0.lib to c:\field\lib\libflame\lib

nmake: Installing libflame header files to c:\field\lib\libflame\include-x64-5.1.0

At this point, the static library and header files are ready to use.

3.6 Dynamic library generation

The Windows build system is equipped to optionally generate a dynamically-linked library (DLL). At the
time of this writing, libflame developers consider the DLL generation to be experimental and likely to not
work. Still, we provide instructions in this section for intrepid users, or experts who wish to tinker and/or
provide us with feedback.

After running configure.cmd, edit the contents of the linkargs.txt file. This file should be modified
to include (1) any linker options the user may need or want, (2) a list of system libraries necessary for
successful linking, (3) a list of library paths to add to the list used when the aforementioned libraries are

4 Of course, if the user is going to invoke an install target, he should first verify that he has permission to access and write
to the directory specified in build\defs.mk. Otherwise, the file copy will fail.

3.6. Dynamic library generation 33

being searched for by the linker, and (4) a path to the BLAS (and LAPACK if the user enabled external
LAPACK interfaces at configure-time). The file format is simple; each line is a line passed to the compiler
when it is invoked as a linker. Simply modify the existing lines, and/or add additional lines if you have more
options, libraries, and/or library paths. The following is an example of the contents of linkargs.txt.

/nologo

/LD /MT

/LIBPATH:"C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib"

/LIBPATH:"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\lib"

/nodefaultlib:libcmt /nodefaultlib:libc /nodefaultlib:libmmt

msvcrt.lib

/LIBPATH:"C:\Program Files (x86)\Intel\Compiler\11.1\048\lib\ia32"

/LIBPATH:"C:\Program Files (x86)\Intel\Compiler\11.1\048\mkl\ia32\lib"

mkl_intel_c.lib

mkl_sequential.lib

mkl_core.lib

The libflame distribution also includes a file named linkargs64.txt which contains the equivalent paths
and flags necessary for 64-bit linking:

/nologo

/LD /MT

/LIBPATH:"C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib\x64"

/LIBPATH:"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\lib\amd64"

/nodefaultlib:libcmt /nodefaultlib:libc /nodefaultlib:libmmt

msvcrt.lib

/LIBPATH:"C:\Program Files (x86)\Intel\Compiler\11.1\048\lib\intel64"

/LIBPATH:"C:\Program Files (x86)\Intel\Compiler\11.1\048\mkl\em64t\lib"

mkl_intel_lp64.lib

mkl_sequential.lib

mkl_core.lib

Link type Component files Purpose
static libflame-x64-r3692.lib The static library containing the libflame object files.

Link to this file when statically linking your application to
libflame.

dynamic libflame-x64-r3692.dll The dynamic library containing the libflame object code.
This file is loaded into memory by the operating system at run-
time the first time a dependent program or library references
libflame symbols.

libflame-x64-r3692.lib The import library. This file contains information such as
the dynamic library filename and which symbols are available
within the dynamic library. The import library is used by
the linker at link-time to resolve all function calls referenced
by the application being built. If you plan to use a dynamic
library build of libflame, reference this file when linking your
application.

libflame-x64-r3692.exp The export file. This file is necessary only when building other
dynamic libraries that depend on a dynamic library build of
libflame.

Table 3.4: The files generated when building revision r3692 of libflame as either a static or dynamic
library. The filenames reflect using “x64” as the architecture string when running configure.cmd.

Simply replace the contents of linkargs.txt with the contents of linkargs64.txt if you wish to generate
a 64-bit library. The file may need some tweaking, depending on your development environment.

34 3. Setup for Microsoft Windows

Note that in the above examples we link against MKL. The dynamic build of libflame requires a BLAS
implementation at the time the DLL is generated. This is necessary so the linker can resolve all BLAS
symbol references within libflame at the time the library is built. To specify a different BLAS library,
simply replace the /LIBPATH entries and .lib filenames accordingly.

After building the static library, the user may re-use the object files to generate the DLL. Simply invoke
the dll target:

C:\field\temp\libflame-5.1.0\windows>nmake dll

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01

Copyright (C) Microsoft Corporation. All rights reserved.

nmake: Creating dynamic library .\dll\x64\debug\libflame-x64-5.1.0.dll

Creating library libflame-x64-5.1.0.lib and object libflame-x64-5.1.0.exp

The purpose of each file produced for static and dynamic builds of libflame is described in Table 3.4.
The filenames in this table correspond to those that would result from building revision 5.1.0 with the
architecture string “x64”.

Once generated, the dynamic library files reside in a directory named dll:

C:\field\temp\libflame-5.1.0\windows>dir dll\x64\debug

Volume in drive C has no label.

Volume Serial Number is B4E3-D9FC

Directory of C:\field\temp\libflame-5.1.0\windows\dll\x64\debug

12/01/2009 01:33 PM <DIR> .

12/01/2009 01:33 PM <DIR> ..

12/01/2009 01:33 PM 19,907,584 libflame-x64-5.1.0.dll

12/01/2009 01:33 PM 618 libflame-x64-5.1.0.dll.manifest

12/01/2009 01:33 PM 330,905 libflame-x64-5.1.0.exp

12/01/2009 01:33 PM 573,048 libflame-x64-5.1.0.lib

4 File(s) 20,812,155 bytes

2 Dir(s) 85,156,536,320 bytes free

The user may then invoke the install-dll target to install the DLL files to the directory specified by
INSTALL PREFIX in build\defs.mk:

C:\field\libflame-wc\windows>nmake install-dll

Microsoft (R) Program Maintenance Utility Version 9.00.30729.01

Copyright (C) Microsoft Corporation. All rights reserved.

nmake: Installing .\dll\x64\debug\libflame-x64-5.1.0.dll to c:\field\lib\libflame\dll

nmake: Installing .\dll\x64\debug\libflame-x64-5.1.0.lib to c:\field\lib\libflame\dll

nmake: Installing .\dll\x64\debug\libflame-x64-5.1.0.exp to c:\field\lib\libflame\dll

If you haven’t already run the install target for a static library install, you’ll need to manually invoke
the install-headers target so that the libflame header files are copied to the install directory.

3.7 Linking against libflame

This section will show you how to link a Windows build of libflame with your existing application. Let’s
assume that you’ve installed libflame to c:\field\lib\libflame. Let’s also assume that you are building
your application from the command line.5

5 We acknowledge that most users will probably be using an integrated development environment (IDE) to develop their
programs. However, just as libflame only supports building from the command line, we will only demonstrate how to link
against the library using nmake and leave it up to the motivated user to learn how to link against libflame from within whatever
IDE he wishes.

3.7. Linking against libflame 35

In general, you should make the following changes to your application build process:

• Add the libflame header directory to the include path of your compiler. Usually, this is done
by with the /I compiler option. For example, if you configured libflame 5.1.0 with the “x64” build
label, and specified that configure.cmd use c:\field\lib\libflame as the install prefix, then you
would add /Ic:\field\lib\libflame\include-x86-r3021 to the command line when invoking the
compiler. Strictly speaking, this is only necessary when compiling source code files that use libflame

symbols or APIs, but it is generally safe to use when compiling all of your application’s source code.

• Add libflame to the link command that links your application. To link against libflame,
you need to add libflame-x64-5.1.0.lib to your link command.

Now let’s give a concrete example of these changes. Suppose you’ve been building your application with
an nmake Makefile that looks something like:

SRC_PATH = .

OBJ_PATH = .

INC_PATH = .

LIB_HOME = c:\field\lib

BLAS_LIB = $(LIB_HOME)\libblas.lib

LAPACK_LIB = $(LIB_HOME)\liblapack.lib

CC = cl.exe

LINKER = link.exe

CFLAGS = /nologo /O2 /I$(INC_PATH)

LDFLAGS = /nologo \

/LIBPATH:"C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib\x64" \

/LIBPATH:"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\lib\amd64" \

/nodefaultlib:libcmt /nodefaultlib:libc /nodefaultlib:libmmt \

msvcrt.lib

MYAPP_OBJS = main.obj file.obj util.obj proc.obj

MYAPP_BIN = my_app.exe

$(SRC_PATH).c$(OBJ_PATH).obj:

$(CC) $(CFLAGS) /c $< /Fo$@

$(MYAPP): $(MYAPP_OBJS)

$(LINKER) $(MYAPP_OBJS) /Fe$(MYAPP_BIN) $(LDFLAGS) $(LAPACK_LIB) $(BLAS_LIB)

clean:

del /F /Q $(MYAPP_OBJS) $(MYAPP_BIN)

del /F /Q *.manifest

To link against libflame , you should change your Makefile as follows:

SRC_PATH = .

OBJ_PATH = .

INC_PATH = .

LIB_HOME = c:\field\lib

BLAS_LIB = $(LIB_HOME)\libblas.lib

LAPACK_LIB = $(LIB_HOME)\liblapack.lib

FLAME_HOME = c:\field\lib\libflame

FLAME_INC = $(FLAME_HOME)\include-x64-5.1.0

FLAME_LIB = $(FLAME_HOME)\lib\libflame-x64-5.1.0.lib

CC = cl.exe

LINKER = link.exe

CFLAGS = /nologo /O2 /I$(INC_PATH) /I$(FLAME_INC)

LDFLAGS = /nologo \

36 3. Setup for Microsoft Windows

/LIBPATH:"C:\Program Files\Microsoft SDKs\Windows\v6.0A\Lib\x64" \

/LIBPATH:"C:\Program Files (x86)\Microsoft Visual Studio 9.0\VC\lib\amd64" \

/nodefaultlib:libcmt /nodefaultlib:libc /nodefaultlib:libmmt \

msvcrt.lib

MYAPP_OBJS = main.obj file.obj util.obj proc.obj

MYAPP_BIN = my_app.exe

$(SRC_PATH).c$(OBJ_PATH).obj:

$(CC) $(CFLAGS) /c $< /Fo$@

$(MYAPP): $(MYAPP_OBJS)

$(LINKER) $(MYAPP_OBJS) /Fe$(MYAPP_BIN) $(LDFLAGS) $(FLAME_LIB) $(LAPACK_LIB) $(BLAS_LIB)

clean:

del /F /Q $(MYAPP_BIN) $(MYAPP_OBJS)

del /F /Q *.manifest

The changes appear in red.
First, we define the locations of libflame and the libflame header directory.
Second, we include the location of the libflame headers to the compilers’ command line options so that

the C compiler will be able to perform type checking against libflame declarations and prototypes.
Finally, we add the libflame library to the link command, making sure to insert it before the LAPACK

and BLAS libraries.
Note that we are linking against a static build of libflame. In principle, the user may also link to a

dynamically-linked copy of libflame. However, as mentioned previously, the DLL instantiation of libflame
is considered experimental and likely to not link properly.

Chapter 4

Using libflame

This chapter contains code examples that illustrate how to use libflame in your application.

4.1 FLAME/C examples

Let us begin by illustrating a small program that uses LAPACK. Figure 4.1 contains a C language program
that acquires a matrix buffer and its dimension properties, performs a Cholesky factorization on the matrix,
and then frees the memory associated with the matrix buffer.

int main(void)

{

double* buffer;

int m, rs, cs;

int info;

char uplo = ’L’;

// Get the matrix buffer address, size, and row and column strides.

get_matrix_info(&buffer, &m, &rs, &cs);

// Compute the Cholesky factorization of the matrix, reading from and

// updating the lower triangle.

dpotrf_(&uplo, &m, buffer, &cs, &info);

// Free the matrix buffer.

free_matrix(buffer);

return 0;

}

Figure 4.1: A simple program that calls dpotrf() from LAPACK.

The program is trivial in that it does not do anything with the factored matrix before exiting. Furthermore,
the corresponding code found in most real-world programs would most likely exist within a loop of some
sort. However, we are keeping things simple here to better illustrate the usage of libflame functions.

Now suppose we wish to modify the previous program to use the FLAME/C API within libflame .
There are two general methods.

• Create a libflame object without a buffer and then attach the conventional row- or column-major
matrix buffer to the bufferless libflame object. This method almost always requires the fewest number
of code changes in the application.

• Modify the application such that the matrix is created natively along with the libflame object. This
will require the user to interface the application to the matrix data within the object using various

37

38 4. Using libflame

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, and row and column strides.

get_matrix_info(&buffer, &m, &rs, &cs);

// Create an m x m double-precision libflame object without a buffer,

// and then attach the matrix buffer to the object.

FLA_Obj_create_without_buffer(FLA_DOUBLE, m, m, &A);

FLA_Obj_attach_buffer(buffer, rs, cs, &A);

// Compute the Cholesky factorization, storing to the lower triangle.

FLA_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object without freeing the matrix buffer.

FLA_Obj_free_without_buffer(&A);

// Free the matrix buffer.

free_matrix(buffer);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.2: The program from Figure 4.1 modified to use libflame objects. This example code illustrates
the minimal amount of work to use FLAME/C APIs in a program that was originally designed to use the
BLAS or LAPACK.

query routines. This method often involves more work because many applications are written to access
matrix buffers directly without any abstractions. There are two different strategies for implementing
this method, and depending on the nature of the application, one strategy may be more appropriate
than the other:

– The matrix may be created and fully initialized, and then copied into a libflame object.

– The matrix may be created and initialized piecemeal, perhaps one block at a time.

Regardless of whether the matrix is initialized in full or one submatrix at a time, the user may use
FLA Copy buffer to object() to copy the data from a conventional column-major matrix arrays to
libflame objects.

The program in Figure 4.2 uses the first method to integrate libflame. Note that changes from the
original example are tracked in red. We start by inserting a #include directive for the libflame header
file, FLAME.h. Before calling any other libflame functions, we must first invoke FLA Init(). Next, we
replace the invocation to dpotrf() with four lines of libflame code. First, an m×m object A of datatype
FLA DOUBLE is created without a buffer. Then the matrix buffer buffer is attached to the libflame object,
assuming row and column strides rs and cs. The Cholesky factorization is invoked on A with FLA Chol().
And finally, the matrix object is released with FLA Obj free without buffer(). The library is finalized
with a call to FLA Finalize().

The second method requires somewhat more extensive modifications to the original program. In Figure
4.3, we revise and extend the previous example. This program initializes the matrix as before, but then

4.2. FLASH examples 39

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, and row and column strides.

get_matrix_info(&buffer, &m, &rs, &cs);

// Create an m x m double-precision libflame object.

FLA_Obj_create(FLA_DOUBLE, m, m, rs, cs, &A);

// Copy the contents of the conventional matrix into a libflame object.

FLA_Copy_buffer_to_object(FLA_NO_TRANSPOSE, m, m, buffer, rs, cs, 0, 0, A);

// Compute the Cholesky factorization, storing to the lower triangle.

FLA_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object.

FLA_Obj_free(&A);

// Free the matrix buffer.

free_matrix(buffer);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.3: The program from Figure 4.1 modified to use libflame objects natively. This code does not
attach the conventional matrix buffer to a bufferless object and instead copies the matrix contents into the
object using FLA Copy buffer to object(). Note that the matrix is copied all at once, and thus here we
assume that original matrix is fully initialized in initialize matrix()

creates a libflame object natively (with an internal buffer), and then copies the contents of the conventional
matrix into the libflame object all at once.

Finally, Figure 4.4 shows what a program might look like if it were to use a native libflame object but
only copy over the data one block at a time. Here, we place FLA Copy buffer to object() in a loop that
copies a single submatrix per iteration. We use FLA Submatrix at() to compute the starting address of the
submatrix whose top-left element is the (i, j) element within the overall matrix stored in buffer.

Note that FLA Copy buffer to object() may also be used to copy over one row or column at a time.
Copying single rows or columns are just special cases of copying rectangular blocks.

4.2 FLASH examples

Now let us discuss how we might convert the libflame programs in Section 4.1 to use the FLASH API.
Please see Section 5.4 for a full discussion of FLASH, including the motivation behind hierarchical objects
and a summary of related terminology.

In the previous section, we reviewed a code (Figure 4.2) that uses libflame functions with an existing
matrix buffer. Figure 4.5 shows what this code would look like if we wished to use hierarchical objects.
Note that the changes from the corresponding FLAME/C code are highlighted in red. The application-
specific code changes are limited to inputting a blocksize value to use in the creation of the hierarchical

40 4. Using libflame

object A. All of the libflame function names are the same as in Figure 4.2 except that the prefix has
changed from FLA to FLASH . Additionally, all of the function type signatures are the same, except for
the invocation to FLASH Obj create without buffer(). This function takes two additional arguments: a
depth, and an array of blocksizes.1 The depth and the blocksize array together determine the details of the
object hierarchy. Also note that since a conventional matrix buffer is being attached, the hierarchical object
A will refer to submatrices that are not contiguous in memory.

In similar fashion, we have modified the code in Figure 4.3 to use hierarchical objects, as shown in
Figure 4.6. The changes in this code are similar to those discussed for the previous example. Note that
while FLA Copy buffer to object() accepts a transposition argument, FLASH Copy flat to hier() does
not, and thus we had to remove this argument from the invocation of the latter function.

In Figure 4.7, we show the code from Figure 4.4 modified to use hierarchical objects. Once again, most
of the differences are limited to changing the function prefixes. The one other change deserves additional
attention, though, which is the use of the blocksize b in the object creation. In the previous code, the blocksize
was used only to determine the sizes of the submatrices that were individually acquired and copied into the A.
This code still uses the blocksize in this manner. However, it also uses the same value to establish the size of
the submatrix blocks in the hierarchical object. It should be emphasized that FLASH Copy flat to hier()

allows the user to copy submatrices into the object that are different in size than the sizes of the underlying
leaf-level blocks. That is, the function is capable of handling copies that span multiple block boundaries.

The key insight we hope to have impressed on our readers from these simple examples is that the FLASH
API (1) provides an easy interface for creating and manipulating hierarchical objects, and (2) is strikingly
similar to the original FLAME/C API wherever possible.

4.3 SuperMatrix examples

1Since the depth is 1 in this example, we choose to simply pass the address of the integer b rather than create a separate
single-element array.

4.3. SuperMatrix examples 41

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs, b;

int i, j;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, row and column strides, and block size.

get_matrix_info(&buffer, &m, &rs, &cs, &b);

// Create an m x m double-precision libflame object.

FLA_Obj_create(FLA_DOUBLE, m, m, rs, cs, &A);

// Acquire the conventional matrix one block at a time and copy these

// blocks into the appropriate location within the libflame object.

for(j = 0; j < m; j += b)

{
for(i = 0; i < m; i += b)

{
double* ij_ptr;

int b_m, b_n;

// Compute the block dimensions, in case they are blocks along the lower and/or

// right edges of the overall matrix.

b_m = (m - i < b ? m - i : b);

b_n = (m - j < b ? m - j : b);

// Get a pointer to the b_m x b_n block that starts at element (i,j).

ij_ptr = FLA_Submatrix_at(FLA_DOUBLE, buffer, i, j, rs, cs);

// Copy the current block into the correct location within the libflame object.

FLA_Copy_buffer_to_object(FLA_NO_TRANSPOSE, b_m, b_n, ij_ptr, rs, cs, i, j, A);

}
}

// Compute the Cholesky factorization, storing to the lower triangle.

FLA_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object.

FLA_Obj_free(&A);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.4: The program from Figure 4.1 modified to use FLAME/C in a way that initializes a libflame

object incrementally, one block at a time.

42 4. Using libflame

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs, b;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, row and column strides, and blocksize.

get_matrix_info(&buffer, &m, &rs, &cs, &b);

// Create an m x m double-precision hierarchical object without a buffer,

// of depth 1 and blocksize b, and then attach the matrix buffer to the object.

FLASH_Obj_create_without_buffer(FLA_DOUBLE, m, m, 1, &b, &A);

FLASH_Obj_attach_buffer(buffer, rs, cs, &A);

// Compute the Cholesky factorization, storing to the lower triangle.

FLASH_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object without freeing the matrix buffer.

FLASH_Obj_free_without_buffer(&A);

// Free the matrix buffer.

free_matrix(buffer);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.5: The program from Figure 4.2 modified to use the FLASH API.

4.3. SuperMatrix examples 43

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs, b;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, row and column strides, and blocksize.

get_matrix_info(&m, &rs, &cs, &b);

// Create an m x m double-precision libflame object.

FLASH_Obj_create(FLA_DOUBLE, m, m, 1, &b, &A);

// Copy the contents of the conventional matrix into a libflame object.

FLASH_Copy_buffer_to_hier(m, m, buffer, rs, cs, 0, 0, A);

// Compute the Cholesky factorization, storing to the lower triangle.

FLASH_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object.

FLASH_Obj_free(&A);

// Free the matrix buffer.

free_matrix(buffer);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.6: The program from Figure 4.3 modified to use the FLASH API.

44 4. Using libflame

#include "FLAME.h"

int main(void)

{
double* buffer;

int m, rs, cs, b;

int i, j;

FLA_Obj A;

// Initialize libflame.

FLA_Init();

// Get the matrix buffer address, size, row and column strides, and blocksize.

get_matrix_info(&buffer, &m, &rs, &cs, &b);

// Create an m x m double-precision libflame object.

FLASH_Obj_create(FLA_DOUBLE, m, m, 1, &b, &A);

// Acquire the conventional matrix one block at a time and copy these

// blocks into the appropriate location within the libflame object.

for(j = 0; j < m; j += b)

{
for(i = 0; i < m; i += b)

{
double* ij_ptr;

int b_m, b_n;

// Compute the block dimensions, in case they are blocks along the lower and/or

// right edges of the overall matrix.

b_m = (m - i < b ? m - i : b);

b_n = (m - j < b ? m - j : b);

// Get a pointer to the b_m x b_n block that starts at element (i,j).

ij_ptr = FLA_Submatrix_at(FLA_DOUBLE, buffer, i, j, rs, cs);

// Copy the current block into the correct location within the libflame object.

FLASH_Copy_buffer_to_hier(b_m, b_n, ij_ptr, rs, cs, i, j, A);

}
}

// Compute the Cholesky factorization, storing to the lower triangle.

FLASH_Chol(FLA_LOWER_TRIANGULAR, A);

// Free the object.

FLASH_Obj_free(&A);

// Finalize libflame.

FLA_Finalize();

return 0;

}

Figure 4.7: The program from Figure 4.4 modified to use the FLASH API.

Chapter 5

User-level Application Programming
Interfaces

This chapter documents the user-level application programming interfaces (APIs) provided by libflame.

5.1 Conventions

Before describing the libflame APIs, let us take a moment to introduce and discuss some of the terminology
that we use when discussing the interfaces. Besides introducing terms, we will, when appropriate, mention
any implicit assumptions we make.

5.1.1 General terms

• Matrix v. object. Throughout this document we refer to both objects and matrices. There are many
instances when the two words are used interchangeably. However, in other cases, the distinction is
intentional. In these cases, an object refers to the data structure that represents the matrix (or vector
or scalar) in question while a matrix refers to a mathematical entity. However, since we, as libflame

developers and users, are only concerned with matrices as they are represented in computational
environments, we often attribute object-like qualities to matrices, such as datatype, length (number of
rows), and width (number of columns).

• Real matrix. A real matrix is one that contains only real numbers.

• Complex matrix. A complex matrix is one that contains complex numbers. That is, every element in
the matrix consists of a real and imaginary component.

• General matrix. A general matrix is one for which we make no special assumptions. That is, we do
not assume any special structure concerning the upper or lower triangles, or the diagonal. General
matrices are sometimes referred to as “full” matrices because algorithms that operate upon them must
assume that each entry is non-zero.

• Symmetric matrix. A symmetric matrix is a square matrix whose (i, j) entry is equal to its (j, i). In
libflame, only the upper or lower triangle of a symmetric matrix is referenced.1

• Hermitian matrix. A Hermitian matrix is a square complex matrix whose (i, j) entry is equal to the
conjugate of its (j, i). As such, the diagonal of a Hermitian matrix is always real. In libflame, only
the upper or lower triangle of a Hermitian matrix is stored or referenced.1

1 Symmetric, Hermitian, and triangular matrices use the same amount of storage space as a general matrix with identical
dimensions. That is, libflame does not attempt to save space by omitting the redundant (symmetric), conjugated (Hermitian),
or zero (triangular) entries in the opposite triangle. The user is free to initialize the opposite triangle of the matrix, even if
none of the computational routines will access it.

45

46 5. User-level Application Programming Interfaces

• Triangular matrix. A matrix is lower triangular if all non-zero entries appear on or below the diagonal,
with entries above the diagonal equal to zero. Likewise, a matrix is upper triangular if all non-zero
entries appear on or above the diagonal, with entires below the diagonal equal to zero. Triangular
matrices are by definition square. In libflame, only the upper or lower triangle of a triangular matrix,
whichever contains the non-zero entries, is stored or referenced.1

• Trapezoidal matrix. A trapezoidal matrix is the rectangular analog of a triangular matrix. The name
“trapezoidal” describes the shape of the area of the matrix containing non-zero entries. Specifically, a
matrix is lower trapezoidal if m > n and all non-zero entries appear on or below the diagonal, with
entries above the diagonal equal to zero. Likewise, a matrix is upper trapezoidal if m < n and all
non-zero entries appear on or above the diagonal, with entries below the diagonal equal to zero.

5.1.2 Notation

• Matrices, vectors, and scalars. Throughout this text, we distinguish between matrices, vectors, and
scalars in the following manner. Matrices are denoted by uppercase letters (examples: A, B, C).
Vectors are denoted by lowercase letters (examples: v, x, y). Scalars are denoted by lowercase Greek
letters (examples: α, β, ρ).

It is worth pointing out that a reference to a matrix A does not preclude A from being a vector or
scalar in certain instances. Similarly, a reference to a vector x does not preclude x from being a 1× 1
scalar. Thus, our choice of name reflects the most liberal assumptions we can make about the linear
algebra entity in question.

Whether an entity is referred to as a matrix, vector, or scalar carries implications with respect to its
dimensions. Matrices are m×n for m,n ≥ 0 while vectors may either be m× 1 or 1×n for m,n ≥ 0.2

Scalars, however, are always 1× 1.

• Conjugation and conjugate transposition. Within this document, we denote the complex conjugate
transpose, or Hermitian tranpose, of a matrix A as AH . Similarly, we denote the conjugate of matrix
A as Ā.

• BLAS and LAPACK routine notation. Most operations implemented within the BLAS and LAPACK
come in four separate implementations, one for each of the four floating-point numerical datatypes.
These datatypes are usually encoded by the first letter of the routine name For example, dgemm()

implements the general matrix-matrix muliply (gemm) operation for real matrices stored in double-
precision floating-point format. Some level-1 routines stray slightly from this convention to handle
situations where the datatypes of two arguments are expected to be different. The zdscal() routine
implements a vector-scaling operation where a double-precision complex vector is scaled by a double-
precision real scalar. In order to more easily refer to related families of routines, we use the following
notation:

– ?: Used as a placeholder for the letter that identifies the datatype expected by the routine: (s, d,
c, or z). Example: ?gemm() refers to the four level-3 BLAS routines that implement the gemm
operation: sgemm(), dgemm(), cgemm(), and zgemm().

– *: Used as a placeholder for the letter or letters that identify the datatypes expected by the
routine. The * character is used for only a handful of level-1 operations that require more than
one letter to encode all datatype instances of the routine. Example: *scal() refers to the six
level-1 BLAS routines that implement the scal operation: sscal(), dscal() cscal(), csscal(),
zscal(), and zdscal().

• Routine name qualifiers. In the course of developing libflame, we found ourselves implementing
extended variations of several BLAS operations. In order to distinguish these similar but distinct
operations from their original counterparts, we use the following letters to encode the specific manner
in which the operation was extended:

2We allow matrices and vectors with zero dimensions to facilitate matrix partitioning, which is a fundamental concept present
in all FLAME algorithms[10].

5.1. Conventions 47

Type Typical parameter name Permitted values Of interest to...

FLA Bool return value
TRUE

FALSE
all users

FLA Datatype datatype

FLA INT

FLA FLOAT

FLA DOUBLE

FLA COMPLEX

FLA DOUBLE COMPLEX

FLA CONSTANT

all users

FLA Elemtype elemtype
FLA SCALAR

FLA MATRIX
advanced users and developers

FLA Matrix type matrix type
FLA FLAT

FLA HIER
advanced users and developers

FLA Side side
FLA LEFT

FLA RIGHT
all users

FLA Uplo uplo
FLA LOWER TRIANGULAR

FLA UPPER TRIANGULAR
all users

FLA Trans trans

FLA NO TRANSPOSE

FLA TRANSPOSE

FLA CONJ NO TRANSPOSE

FLA CONJ TRANSPOSE

all users

FLA Conj conj
FLA NO CONJUGATE

FLA CONJUGATE
all users

FLA Diag diag

FLA NONUNIT DIAG

FLA UNIT DIAG

FLA ZERO DIAG

all users

FLA Quadrant quadrant

FLA TL

FLA TR

FLA BL

FLA BR

all users

FLA Direct direct
FLA FORWARD

FLA BACKWARD
all users

FLA Store storev
FLA ROWWISE

FLA COLUMNWISE
all users

FLA Pivot type ptype
FLA NATIVE PIVOTS

FLA LAPACK PIVOTS
all users

FLA Error return value
FLA SUCCESS

FLA FAILURE

...

all users

FLA Inv inv
FLA NO INVERSE

FLA INVERSE
all users

Table 5.1: Table of libflame types and permitted values.

48 5. User-level Application Programming Interfaces

– r: Includes an uplo argument.

– t: Includes a trans argument.

– c: Includes a conjugation argument.

– s: Utilizes additional scalars.

– x: Accumulates to a different matrix or vector object.

So, for example, the libflame routine FLA Gemvc external() implements the same gemv operation
implemented by FLA Gemv external(), except that it allows the user to optionally conjugate the x
vector argument. Likewise, the routine FLA Trmvsx external() implements an operation similar to the
trmv operation implemented in FLA Trmv external(), except that it allows the user to use additional
scalars and accumulate the result into a separate vector rather that overwrite the contents of one of
the original input arguments.

• Constraints. Some interface descriptions contain a section describing constraints placed on the imple-
mentation. These contraints may be imposed by the operation (e.g. “The length of vector x must
be equal to the length of vector y.”) or by the interface (e.g. “The datatype of A must not be
FLA CONSTANT.”) These constraints correspond to internal safety checks performed by libflame. If
one of these checks fails, then the implementation invokes abort().3

Some things that would otherwise qualify as an operation constraint are not listed explicitly as con-
straints, but rather implied by the operation description (e.g. That x is defined as a vector.) These
implicit constraints often still correspond to safety checks.

• Types. Table 5.1 lists all constant types and valid type values defined by libflame.

• API descriptions. The API descriptions in this document may contain various combinations of the
following sections:

– Purpose. Provides a general overview of the function, and/or a description of the mathematical
operation that the function implements.

– Notes. Describes additional information of a general nature.

– Int. Notes. Describes additional information concerning the function interface.

– Imp. Notes. Describes additional information concerning the function’s implementation within
libflame.

– Dev. Notes. This section is usually a note to developers, often a reminder of needed attention
to a function that needs improvement.

– More Info. Usually this section appears in documentation for a function that is very similar
to another function, and points the reader elsewhere for further details of the operation being
implemented.

– Returns. A brief characterization of the type and value returned by the function.

– Caveats. Contains warnings to the user on the function’s usage.

– Constraints. A list of constraints on the function, including constraints imposed by the op-
eration specification and its implementation within libflame. These constraints almost always
correspond to checks that are performed at runtime.

– Arguments. A list of function parameters with brief descriptions.

3The libflame developers understand that this behavior is overkill. Some might argue in favor of handling fatal errors
through return values. We do not believe that offloading the burden of error checking to the user is the right answer. However,
libflame may in the future offer a query routine that allows the application to query whether the library has encountered an
error.

5.1. Conventions 49

5.1.3 Objects

• Numerical datatype. The numerical datatype, or just datatype, of a matrix is a constant stored in
the matrix object that determines the both the floating-point precision and the domain of the ele-
ments within the matrix. The constants FLA FLOAT and FLA DOUBLE identify matrix objects created
to store single precision real and double precision real values, respectively. Likewise, FLA COMPLEX and
FLA DOUBLE COMPLEX identify matrix objects created to store single precision complex and double pre-
cision complex values, respectively. We also include FLA INT in the category of numerical datatypes;
however, we exclude FLA INT when referring to floating-point numerical datatypes, or more simply,
floating-point datatypes.

• Leading dimension. The “leading dimension” of a matrix object refers to the distance in memory
that separates adjacent columns (for column-major storage) or rows (for row-major storage). In this
document, we prefer to identify the row and column strides explicitly to remove ambiguity as to the
storage format. A row stride of 1 implies that the matrix is stored in column-major order, and likewise
a column stride of 1 implies row-major storage. A matrix stored in column-major order often has a
column stride equal to the m dimension, though it could be larger. Similarly, a row-major matrix will
have a row stride equal to or greater than the n dimension. It is also quite common for a matrix object
to refer to a submatrix of a larger matrix, in which case the row or column stride will exceed the m or
n dimensions, respectively, for column- and row-major cases.

• Row vectors v. column vectors. A row vector is a vector with an m dimension of one, while a column
vector is a vector with an n dimension of one. Given a column-major storage scheme, column vectors
are contiguous in memory while row vectors typically have a non-unit increment. Hoewver, sometimes
vectors are created individually (ie: they do not exist as part of a larger matrix) in which case they
may be interpreted as either row or column vectors. Vectors should be assumed to be column vectors
unless otherwise qualified.

• Indices. The interfaces in libflame largely circumvent indices altogether. However, in some cases,
indices are unavoidable. Furthermore, we use indices when describing some of the mathematical oper-
ations implemented in libflame. Unless otherwise indicated, the user should assume that all indices
start with zero.

• Conformal dimensions. Various API descriptions use the term “conformal” to describe a requirement
on the dimensions of two matrices. Matrices A and B are said to have conformal dimensions if A and
B are both m× n.

• Storage. libflame interfaces with three kinds of matrix storage schemes:

– Flat objects. The primary means of storing matrices in libflame is within “flat” matrix objects.
These objects store their numerical contents in either row- or column-major order, depending on
the row and column strides given when the object is created. Most libflame functions operate
on flat objects.

– Conventional matrix buffers. Many legacy applications interface to their matrices by indexing
directly into the matrix buffer. These so-called conventional matrices are essentially identical to
a row-major or column-major flat object, except that the matrix properties are not encapsulated
in a libflame object. To compute with conventional matrices, the user must first “attach” the
matrix buffer and other information to a “bufferless” object. The user may then compute with
the object as if it were a created natively within libflame and subsequently access the results
directy via the buffer address. See the descriptions for FLA Obj create without buffer() and
FLA Obj attach buffer() for more information on interfacing with matrices stored convetionally.

– Hierarchical objects. It is often advantageous to store a matrix by blocks that are contiguous
in memory. When used within an algorithm-by-blocks, this storage scheme provides additional
spatial locality when compared to conventional/flat matrix storage. The details of the hierarchi-
cal storage scheme, however, are intentionally hidden from the user. See Section 5.4 for more
information on the motivation for hierarchical storage and the libflame APIs for creating and
manipulating hierarchical objects.

50 5. User-level Application Programming Interfaces

• Transposition. Many routines in libflame allow the user to optionally transpose one or more arguments
as part of the operation. For example, the gemm operation allows the user to transpose matrix A, or
matrix B, or both. It is worth mentioning that this kind of transposition does not actually change
the contents of matrices A or B. In these situations, the transposition is performed as part of the
algorithm. In very few cases does the computation actually transpose the contents of a matrix, and
these exceptions should be clear from the interface description.

• Global scalar constants. Many functions within libflame require the user to provide a 1 × 1 object
to serve as a scaling factor in the operation in question. The gemm operation, for example, has two
of these scalars, α and β. For convenience, libflame defines the following global objects to represent
commonly used scalars: FLA MINUS ONE, FLA ZERO, FLA ONE, FLA TWO. These global scalar may be used
wherever an operation reads, but does not write to or update, a scalar object. We’ve placed safeguards
in most libflame functions that would prevent the user from changing these global scalar objects.
Still, the user should consider them to be constant and should never attempt to update or overwrite
them.

5.2 FLAME/C Basics

5.2.1 Initialization and finalization

void FLA_Init(void);

Purpose: Initialize the library.

Notes: This function must be invoked before any other libflame functions.

void FLA_Finalize(void);

Purpose: Release all internal library resources. After FLA Finalize() returns, libflame functions
should not be used until FLA Init() is called again.

Notes: This function should be invoked when your application is finished using libflame.

FLA_Bool FLA_Initialized(void);

Purpose: Check if the library is initialized.

Returns: A boolean value: TRUE if libflame is currently initialized; FALSE otherwise.

5.2. FLAME/C Basics 51

5.2.2 Object creation and destruction

FLA_Error FLA_Obj_create(FLA_Datatype datatype, dim_t m, dim_t n,

dim_t rs, dim_t cs, FLA_Obj* obj);

Purpose: Create a new object from an uninitialized FLA Obj structure. Upon returning, obj points
to a valid heap-allocated m× n object whose elements are of numerical type datatype.

Notes: Currently, libflame supports both column-major storage and row-major storage, but
not general storage (that is, storage in which neither rows nor columns are stored con-
tiguously in memory). In most cases, the user should create objects according to the
following policy: if column-major storage is desired, rs should be set to 1 and cs should
be set to m; otherwise, if row-major storage is desired, rs should be set to n and cs
should be set to 1. Invoking FLA Obj create() with both rs and cs equal to zero is
interpreted as a request for the default storage scheme, which is currently column-major
storage.

Returns: FLA SUCCESS

Constraints:
• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be

equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The datatype of B may not be FLA CONSTANT.

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
rs – The row stride of the underlying data buffer in new object.
cs – The column stride of the underlying data buffer in new object.
obj

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by m, n, and datatype.

52 5. User-level Application Programming Interfaces

FLA_Error FLA_Obj_create_conf_to(FLA_Trans trans, FLA_Obj obj_cur, FLA_Obj* obj_new);

Purpose: Create a new object obj new with the same datatype and dimensions as an existing
object obj cur. The user may optionally create obj new with the m and n dimensions
transposed by specifying FLA TRANSPOSE for the trans argument. After obj new is
created, it must be initialized before it is used in any computation which reads its
numerical data.

Notes: The caller may use FLA CONJ NO TRANSPOSE and FLA CONJ TRANSPOSE for the trans

argument. The conjugation component of these values is ignored and thus for this routine
they are effectively equivalent to FLA NO TRANSPOSE and FLA TRANSPOSE, respectively.

Notes: The new object, obj new, is created with similar storage properties as obj cur. For ex-
ample, if obj cur is stored in column-major order, then obj new is created with column-
major order as well. However, the object is created with a minimal leading dimension
(the column stride for column-major storage, or the row stride for row-major storage),
such that there is no excess storage beyond the bounds of the matrix.

Returns: FLA SUCCESS

Arguments:
trans – Indicates whether to create the object pointed to by obj new with

transposed dimensions.
obj cur – An existing FLA Obj.
obj new

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by the datatype and di-

mensions of obj cur.

FLA_Error FLA_Obj_create_copy_of(FLA_Trans trans, FLA_Obj obj_cur, FLA_Obj* obj_new);

Purpose: Create a new object obj new with the same datatype and dimensions as an existing
object obj cur. The user may optionally create obj new with the m and n dimensions
transposed by specifying FLA TRANSPOSE for the trans argument. After obj new is
created, it is initialized with the contents of obj cur, applying a transposition according
to trans.

Notes: The caller may use FLA CONJ NO TRANSPOSE and FLA CONJ TRANSPOSE for the trans

argument. The conjugation component of these values is ignored and thus for this routine
they are effectively equivalent to FLA NO TRANSPOSE and FLA TRANSPOSE, respectively.

Notes: The new object, obj new, is created with similar storage properties as obj cur. For ex-
ample, if obj cur is stored in column-major order, then obj new is created with column-
major order as well. However, the object is created with a minimal leading dimension
(the column stride for column-major storage, or the row stride for row-major storage),
such that there is no excess storage beyond the bounds of the matrix.

Returns: FLA SUCCESS

Arguments:
trans – Indicates whether to create the object pointed to by obj new with

transposed dimensions.
obj cur – An existing FLA Obj.
obj new

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by the datatype and di-

mensions of obj cur with its numerical contents identical to that of
obj cur.

5.2. FLAME/C Basics 53

FLA_Error FLA_Obj_free(FLA_Obj* obj);

Purpose: Release all resources allocated to an object. This includes the object resources as well
as the data buffer associated with the object. Upon returning, obj points to a structure
which is, for all intents and purposes, uninitialized.

Returns: FLA SUCCESS

Arguments:
obj

(on entry) – A pointer to a valid FLA Obj.
(on exit) – A pointer to an uninitialized FLA Obj.

5.2.3 General query functions

FLA_Datatype FLA_Obj_datatype(FLA_Obj obj);

Purpose: Query the numerical datatype of an object.

Returns: One of {FLA INT, FLA FLOAT, FLA DOUBLE, FLA COMPLEX, FLA DOUBLE COMPLEX,
FLA CONSTANT}.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_length(FLA_Obj obj);

Purpose: Query the number of rows in a view into an object.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_width(FLA_Obj obj);

Purpose: Query the number of columns in a view into an object.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_min_dim(FLA_Obj obj);

Purpose: Query the smaller of the object view’s length and width dimensions.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

54 5. User-level Application Programming Interfaces

dim_t FLA_Obj_max_dim(FLA_Obj obj);

Purpose: Query the larger of the object view’s length and width dimensions.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_vector_dim(FLA_Obj obj);

Purpose: If obj is a column or row vector, then return the number of elements in the vector.
Otherwise, return to object view’s length.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_vector_inc(FLA_Obj obj);

Purpose: If obj is a column or row vector, then return the stride, or increment, that separates
elements of the vector in memory. Otherwise, return 1.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

FLA_Error FLA_Obj_show(char* header, FLA_Obj obj, char* format, char* footer);

Purpose: Display the numerical values contained in the object view obj. The string header is
output first (followed by a newline), then formatted contents of obj, and finally the
string footer (followed by a newline). The string format should contain a printf()-
style format string that describes how to output each element of the matrix. Note
that format must be set according to the numerical contents of obj. For example,
if the datatype of obj is FLA DOUBLE, the user may choose to use "%11.3e" as the
format string. If the object were of type FLA DOUBLE COMPLEX, the user would use the
same format string, however, internally it would be duplicated to denote both real and
imaginary components (ie: "%11.3e + %11.3e").

Returns: FLA SUCCESS

Arguments:

header – A pointer to a string to precede the formatted output of obj.
obj – An FLA Obj.
format – A pointer to a printf()-style format string.
footer – A pointer to a string to proceed the formatted output of obj.

5.2. FLAME/C Basics 55

FLA_Error FLA_Obj_fshow(FILE* file, char* header, FLA_Obj obj, char* format,

char* footer);

Purpose: Display the numerical values contained in obj. FLA Obj fshow() and FLA Obj show()

are identical except that the former prints its output to a file stream whereas the latter
prints to standard output.

Notes: The user must ensure that the file stream corresponding to file has been opened and
is writable, and also that an error has not occured on a previous write.

Returns: FLA SUCCESS

Imp. Notes: FLA Obj fshow() uses fprintf() to write output to file. It is possible that one of these
write requests will cause an error that prevents subsequent invocations of fprintf()

from succeeding. As it is currently implemented, FLA Obj fshow() does not report such
errors.

Arguments:

file – A file pointer returned via fopen().
header – A pointer to a string to precede the formatted output of obj.
obj – An FLA Obj.
format – A pointer to a printf()-style format string.
footer – A pointer to a string to proceed the formatted output of obj.

5.2.4 Interfacing with conventional matrix arrays

FLA_Error FLA_Obj_create_without_buffer(FLA_Datatype datatype, dim_t m, dim_t n,

FLA_Obj* obj);

Purpose: Create a new object, except without any internal numerical data buffer. Before using
the object the user must attach a valid buffer with FLA Obj attach buffer()or allocate
a new buffer for the object via FLA Obj create buffer().

Notes: The object’s datatype will have already been set when
FLA Obj create without buffer() returns. Thus, if the user plans on attaching
a buffer via FLA Obj attach buffer(), he must take care to create the object with
the datatype corresponding to the numerical values contained in the buffer he plans on
attaching.

Returns: FLA SUCCESS

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
obj

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new, bufferless FLA Obj parameterized by m, n, and

datatype.

56 5. User-level Application Programming Interfaces

FLA_Error FLA_Obj_create_buffer(dim_t rs, dim_t cs, FLA_Obj* obj);

Purpose: Allocate a new buffer for an object that was previously created via
FLA Obj create without buffer(). The function uses rs and cs to set the row
and column strides, respectively, which will be used when subsequent functions access
the matrix elements.

Notes: Currently, one of rs and cs must be unit, corresponding to either column-major or
row-major storage. Passing zero for both parameters is interpreted as a request for the
default storage scheme, with is column-major.

Returns: FLA SUCCESS

Arguments:

rs – The row stride of the matrix buffer that will be allocated.
cs – The column stride of the matrix buffer that will be allocated.
obj

(on entry) – A pointer to a valid FLA Obj that was created without a buffer.
(on exit) – A pointer to a valid FLA Obj with a buffer large enough to encapsu-

late an m × n matrix, according to row and column strides rs and
cs, where m, n, and the datatype were previously determined via
FLA Obj create without buffer().

FLA_Error FLA_Obj_free_without_buffer(FLA_Obj* obj);

Purpose: Release all resources allocated to an object, but do not release the buffer attached to the
object. Upon returning, obj points to a structure which is, for all intents and purposes,
uninitialized.

Returns: FLA SUCCESS

Arguments:
obj

(on entry) – A pointer to a valid FLA Obj.
(on exit) – A pointer to an uninitialized FLA Obj.

FLA_Error FLA_Obj_free_buffer(FLA_Obj* obj);

Purpose: Release only the buffer memory associated with an object. The rest of the object is left
untouched. After calling this routine, the user should ensure that the rest of the object
is freed via FLA Obj free without buffer().

Notes: When freeing the buffer and object separately, the buffer must be freed first. That is,
FLA Obj free buffer() must be called before FLA Obj free without buffer().

Returns: FLA SUCCESS

Arguments:
obj

(on entry) – A pointer to a valid FLA Obj.
(on exit) – A pointer to a bufferless FLA Obj.

5.2. FLAME/C Basics 57

FLA_Error FLA_Obj_attach_buffer(void* buffer, dim_t rs, dim_t cs, FLA_Obj* obj);

Purpose: Attach a user-allocated region of memory to an object that was created with
FLA Obj create without buffer(). This routine is useful when the user, either by
preference or necessity, wishes to allocate and/or initialize memory for linear algebra ob-
jects before encapsulating the data within an object structure. Note that it is important
that the user submit the correct row and column strides rs and cs, which, combined
with the m and n dimensions submitted when the object was created, will determine
what region of memory is accessible. A row or column stride which is inadvertantly set
too large may result in memory accesses outside of the intended region during subsequent
computation, which will likely cause undefined behavior.

Notes: When you are finished using an FLA Obj with an attached buffer, you should free it
with FLA Obj free without buffer(). However, you are still responsible for freeing the
memory pointed to by buffer using free() or whatever memory deallocation function
your system provides. Alternatively, you may call FLA Obj free() if you wish to free
both the previously allocated buffer and the FLA Obj itself.

Returns: FLA SUCCESS

Constraints:
• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be

equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

Arguments:
buffer – A valid region of memory allocated by the user. Typically, the address

to this memory is obtained dynamically through a system function
such as malloc(), but the memory may also be statically allocated.

rs – The row stride of the matrix stored conventionally in buffer.
cs – The column stride of the matrix stored conventionally in buffer.
obj

(on entry) – A pointer to a valid FLA Obj that was created without a buffer.
(on exit) – A pointer to a valid FLA Obj that encapsulates the data in buffer.

void* FLA_Obj_buffer_at_view(FLA_Obj obj);

Purpose: Query the starting address of an object view’s underlying numerical data buffer. The
address of the view is computed according to current row and column offset of the object
view, and is not necessarily the starting address of the overall object.

Notes: Since the address returned by FLA Obj buffer at view() is of type void*, the user
must typecast it to one of the five numerical datatypes supported by the library (int,
float, double, complex, double complex). The correct typecast may be determined with
FLA Obj datatype().

Returns: A pointer of type void*.

Arguments:

obj – An FLA Obj.

58 5. User-level Application Programming Interfaces

dim_t FLA_Obj_row_stride(FLA_Obj obj);

Purpose: Query the row stride associated with the object’s underlying element data buffer. The
row stride is the number of elements that separates matrix element (r, c) from element
(r + 1, c).

Notes: libflame supports both row- and column-major storage for matrix objects. When a
matrix object is stored in column-major order, its row stride is, by definition, equal to
1. Likewise, when a matrix object is stored in row-major order, its column stride is by
definition equal to 1.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_col_stride(FLA_Obj obj);

Purpose: Query the column stride associated with the object’s underlying element data buffer.
The column stride is the number of elements that separates matrix element (r, c) from
element (r, c+ 1).

Notes: libflame supports both row- and column-major storage for matrix objects. When a
matrix object is stored in column-major order, its row stride is, by definition, equal to
1. Likewise, when a matrix object is stored in row-major order, its column stride is by
definition equal to 1.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

5.2. FLAME/C Basics 59

FLA_Error FLA_Copy_buffer_to_object(FLA_Trans trans, dim_t m, dim_t n, void* A,

dim_t rs, dim_t cs, dim_t i, dim_t j, FLA_Obj B);

Purpose: Copy the contents of an m × n conventional row- or column-major matrix A with row
and column strides rs and cs into the submatrix Bij whose top-left element is the (i, j)
entry of B. The trans argument may be used to optionally transpose the matrix during
the copy.

Notes: The user should ensure that the numerical datatype used in A is the same as the datatype
used when B was created.

Returns: FLA SUCCESS

Constraints:
• If trans equals FLA NO TRANSPOSE, then B must be at least i+m× j + n; otherwise,

if trans equals FLA TRANSPOSE, then B must be at least i+ n× j +m.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The datatype of B may not be FLA CONSTANT.

Arguments:

trans – Indicates whether to transpose the matrix A during the copy.
m – The number of rows to copy from A to Bij .
n – The number of columns to copy from A to Bij .
A – A pointer to the first element in A.

rs – The row stride of A.
cs – The column stride of A.
i – The row offset in B of the submatrix Bij .
j – The column offset in B of the submatrix Bij .
B – An FLA Obj representing matrix B.

60 5. User-level Application Programming Interfaces

FLA_Error FLA_Copy_object_to_buffer(FLA_Trans trans, dim_t i, dim_t j, FLA_Obj A,

dim_t m, dim_t n, void* B, dim_t rs, dim_t cs);

Purpose: Copy the contents of an m×n submatrix Aij whose top-left element is the (i, j) entry of
A into a conventional row- or column-major matrix B with row and column strides rs

and cs. The trans argument may be used to optionally transpose the submatrix during
the copy.

Notes: The user should be aware of the numerical datatype of A and then access B accordingly.

Returns: FLA SUCCESS

Constraints:
• If trans equals FLA NO TRANSPOSE, then A must be at least i+m× j + n; otherwise,

if trans equals FLA TRANSPOSE, then A must be at least i+ n× j +m.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The datatype of A may not be FLA CONSTANT.

Arguments:

trans – Indicates whether to transpose the submatrix Aij during the copy.
i – The row offset in A of the submatrix Aij .
j – The column offset in A of the submatrix Aij .
A – An FLA Obj representing matrix A.
m – The number of rows to copy from Aij to B.
n – The number of columns to copy from Aij to B.
B – A pointer to the first element in B.

rs – The row stride of B.
cs – The column stride of B.

5.2. FLAME/C Basics 61

FLA_Error FLA_Axpy_buffer_to_object(FLA_Trans trans, FLA_Obj alpha,

dim_t m, dim_t n, void* A, dim_t rs, dim_t cs,

dim_t i, dim_t j, FLA_Obj B);

Purpose: Perform one of the following operations:

Bij := Bij + αA

Bij := Bij + αAT

where α is a scalar, A is an m× n conventional row- or column-major matrix with row
and column strides rs and cs, and Bij is the submatrix whose top-left element is the
(i, j) entry of B. The trans argument may be used to optionally transpose A during
the operation.

Notes: The user should ensure that the numerical datatype used in A is the same as the datatype
used when B was created.

Returns: FLA SUCCESS

Constraints:
• If trans equals FLA NO TRANSPOSE, then B must be at least i+m× j + n; otherwise,

if trans equals FLA TRANSPOSE, then B must be at least i+ n× j +m.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The datatype of B may not be FLA CONSTANT.

Arguments:

trans – Indicates whether to transpose the matrix A during the operation.
alpha – An FLA Obj representing scalar α.
m – The number of rows in A and Bij referenced by the operation.
n – The number of columns in A and Bij referenced by the operation.
A – A pointer to the first element in A.

rs – The row stride of A.
cs – The column stride of A.
i – The row offset in B of the submatrix Bij .
j – The column offset in B of the submatrix Bij .
B – An FLA Obj representing B.

62 5. User-level Application Programming Interfaces

FLA_Error FLA_Axpy_object_to_buffer(FLA_Trans trans, FLA_Obj alpha,

dim_t i, dim_t j, FLA_Obj A,

dim_t m, dim_t n, void* B, dim_t rs, dim_t cs);

Purpose: Perform one of the following operations:

B := B + αAij

B := B + αATij

where α is a scalar, Aij is the submatrix whose top-left element is the (i, j) entry of
A, and B is an m× n conventional row- or column-major matrix with row and column
strides rs and cs. The trans argument may be used to optionally transpose Aij during
the operation.

Notes: The user should be aware of the numerical datatype of A and then access B accordingly.

Returns: FLA SUCCESS

Constraints:
• If trans equals FLA NO TRANSPOSE, then A must be at least i+m× j + n; otherwise,

if trans equals FLA TRANSPOSE, then A must be at least i+ n× j +m.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The datatype of A may not be FLA CONSTANT.

Arguments:

trans – Indicates whether to transpose the matrix B during the operation.
alpha – An FLA Obj representing scalar α.
i – The row offset in A of the submatrix Aij .
j – The column offset in A of the submatrix Aij .
A – An FLA Obj representing A.
m – The number of rows in Aij and B referenced by the operation.
n – The number of columns in Aij and B referenced by the operation.
B – A pointer to the first element in B.

rs – The row stride of B.
cs – The column stride of B.

5.2.5 More query functions

FLA_Datatype FLA_Obj_datatype_proj_to_real(FLA_Obj obj);

Purpose: Query the real projection of an object’s datatype. If the object datatype is single preci-
sion (ie: FLA FLOAT or FLA COMPLEX) then FLA FLOAT is returned; otherwise, FLA DOUBLE

is returned.

Returns: One of {FLA FLOAT, FLA DOUBLE}.

Constraints:
• The numerical datatype of obj must be floating-point, and must not be FLA CONSTANT.

Arguments:

obj – An FLA Obj.

5.2. FLAME/C Basics 63

FLA_Datatype FLA_Obj_datatype_proj_to_complex(FLA_Obj obj);

Purpose: Query the complex projection of an object’s datatype. If the object datatype is sin-
gle precision (ie: FLA FLOAT or FLA COMPLEX) then FLA COMPLEX is returned; otherwise,
FLA DOUBLE COMPLEX is returned.

Returns: One of {FLA COMPLEX, FLA DOUBLE COMPLEX}.

Constraints:
• The numerical datatype of obj must be floating-point, and must not be FLA CONSTANT.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_int(FLA_Obj obj);

Purpose: Check if an object contains integer values.

Returns: A boolean value: TRUE if the datatype of obj is FLA INT; FALSE otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_floating_point(FLA_Obj obj);

Purpose: Check if an object contains floating-point (non-integer) numerical values.

Returns: A boolean value: TRUE if the datatype of obj is FLA FLOAT, FLA DOUBLE, FLA COMPLEX,
or FLA DOUBLE COMPLEX; FALSE otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_constant(FLA_Obj obj);

Purpose: Check if an object is one of the standard libflame constants.

Returns: A boolean value: TRUE if the datatype of obj is FLA CONSTANT; FALSE otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_real(FLA_Obj obj);

Purpose: Check if an object contains real numerical values.

Returns: A boolean value: TRUE if the datatype of obj is FLA FLOAT or FLA DOUBLE; FALSE other-
wise.

Arguments:

obj – An FLA Obj.

64 5. User-level Application Programming Interfaces

FLA_Bool FLA_Obj_is_complex(FLA_Obj obj);

Purpose: Check if an object contains complex numerical values.

Returns: A boolean value: TRUE if the datatype of obj is FLA COMPLEX or FLA DOUBLE COMPLEX;
FALSE otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_single_precision(FLA_Obj obj);

Purpose: Check if an object uses a single-precision floating-point datatype.

Returns: A boolean value: TRUE if the datatype of obj is FLA FLOAT or FLA COMPLEX; FALSE

otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_double_precision(FLA_Obj obj);

Purpose: Check if an object uses a double-precision floating-point datatype.

Returns: A boolean value: TRUE if the datatype of obj is FLA DOUBLE or FLA DOUBLE COMPLEX;
FALSE otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_scalar(FLA_Obj obj);

Purpose: Check if an object is 1× 1.

Returns: A boolean value: TRUE if the row and column dimensions of obj are equal to 1; FALSE
otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_vector(FLA_Obj obj);

Purpose: Check if an object is 1× n or m× 1.

Returns: A boolean value: TRUE if either the row or column dimension of obj is equal to 1; FALSE
otherwise.

Arguments:

obj – An FLA Obj.

5.2. FLAME/C Basics 65

FLA_Bool FLA_Obj_has_zero_dim(FLA_Obj obj);

Purpose: Check if an object is 0× n or m× 0.

Returns: A boolean value: TRUE if either the row or column dimension of obj is equal to 0; FALSE
otherwise.

Arguments:

obj – An FLA Obj.

FLA_Bool FLA_Obj_is_conformal_to(FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Check if A and B have conformal dimensions. That is, check if the length and width of
A are equal to the length and width of B, respectively. The trans argument may be
used to perform the check as if A were transposed.

Returns: A boolean value: TRUE if the row and column dimensions of A are equal to the row and
column dimensions of B, modulo a possible transposition of A; FALSE otherwise.

Arguments:

trans – Indicates whether to perform the check as if A were transposed.
A – An FLA Obj.
B – An FLA Obj.

FLA_Bool FLA_Obj_is(FLA_Obj A, FLA_Obj B);

Purpose: Check if A and B refer to the same underlying object.

Returns: A boolean value: TRUE if A and B are the same object; FALSE otherwise.

Dev. notes: This function needs to be reimplemented. Right now, it will return true even if two
disjoint views to the same object are passed in.

Arguments:

A – An FLA Obj.
B – An FLA Obj.

FLA_Bool FLA_Obj_equals(FLA_Obj A, FLA_Obj B);

Purpose: Check if A and B contain the same numerical values, element-wise.

Returns: A boolean value: TRUE if A and B are equal; FALSE otherwise.

Arguments:

A – An FLA Obj.
B – An FLA Obj.

66 5. User-level Application Programming Interfaces

void FLA_Obj_extract_real_scalar(FLA_Obj alpha, double* val);

Purpose: Copy the numerical element of real scalar α into the address specified by val. If object
α is not a scalar (ie: contains more than one element), the value of the top-left element
is copied instead.

Constraints:
• The numerical datatype of α must be floating-point and real.

Arguments:

alpha – An FLA Obj representing scalar α.

val – The address of the location to which to store the value of α.

void FLA_Obj_extract_complex_scalar(FLA_Obj alpha, dcomplex* val);

Purpose: Copy the numerical element of complex scalar α into the address specified by val. If
object α is not a scalar (ie: contains more than one element), the value of the top-left
element is copied instead.

Constraints:
• The numerical datatype of α must be floating-point and complex.

Arguments:

alpha – An FLA Obj representing scalar α.

val – The address of the location to which to store the value of α.

void FLA_Obj_extract_real_part(FLA_Obj alpha, FLA_Obj beta);

Purpose: Copy the real component of scalar α into a real scalar β. If α is real, then its contents
are simply copied into β.

Constraints:
• The numerical datatype of α must be floating-point.

• The numerical datatype of β must be real and must not be FLA CONSTANT.

• The precision of the datatype of α must be equal to that of β.

Arguments:

alpha – An FLA Obj representing scalar α.
beta – An FLA Obj representing scalar β.

void FLA_Obj_extract_imag_part(FLA_Obj alpha, FLA_Obj beta);

Purpose: Copy the imaginary component of scalar α into a real scalar β. If α is real, then β is set
to zero.

Constraints:
• The numerical datatype of α must be floating-point.

• The numerical datatype of β must be real and must not be FLA CONSTANT.

• The precision of the datatype of α must be equal to that of β.

Arguments:

alpha – An FLA Obj representing scalar α.
beta – An FLA Obj representing scalar β.

5.2. FLAME/C Basics 67

FLA_Bool FLA_Obj_buffer_is_null(FLA_Obj obj);

Purpose: Check if an object’s data buffer is NULL and therefore currently un-allocated. The func-
tion will also return TRUE if the object itself has not yet been created.

Returns: A boolean value: TRUE if either the object is unallocated or the object has a NULL buffer;
FALSE otherwise.

Arguments:

obj – An FLA Obj.

void* FLA_Submatrix_at(FLA_Datatype datatype, void* buffer, dim_t i, dim_t j,

dim_t rs, dim_t cs);

Purpose: Compute the starting address of a submatrix whose top-left element is the (i, j) element
within the conventional row- or column-major order matrix stored in buffer with row
and column strides rs and cs.

Returns: The starting address of the requested submatrix.

Arguments:
datatype – A constant corresponding to the numerical datatype of the data stored

in buffer.
buffer – A pointer to a matrix stored in row- or column-major order.
i – The row offset of the requested submatrix.
j – The column offset of the requested submatrix.

rs – The row stride of the matrix stored in buffer.
cs – The column stride of the matrix stored in buffer.

5.2.6 Assignment/Update functions

void FLA_Set(FLA_Obj alpha, FLA_Obj A);

Purpose: Set every element in A to α.

Constraints:
• The numerical datatype of A must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A.

Arguments:

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

68 5. User-level Application Programming Interfaces

void FLA_Setr(FLA_Uplo, FLA_Obj alpha, FLA_Obj A);

Purpose: Set every element in the upper or lower triangle of A to α. The triangle that is modified
is determined by uplo.

Constraints:
• The numerical datatype of A must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Set_diag(FLA_Obj alpha, FLA_Obj A);

Purpose: Set all diagonal elements of A to α.

Constraints:
• The numerical datatype of A must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A.

Arguments:

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Set_to_identity(FLA_Obj A);

Purpose: Set a matrix to be the identity matrix:

A := In

where A is an n× n general matrix.

Constraints:
• The numerical datatype of A must not be FLA CONSTANT.

• A must be square.

Arguments:

A – An FLA Obj representing matrix A.

void FLA_Add_to_diag(void *alpha, FLA_Obj A);

Purpose: Add α to the diagonal elements of A.

Notes: The datatype of A should match the datatype of the value pointed to by alpha.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• alpha must not be NULL.

Arguments:

alpha – A pointer to a scalar α.
A – An FLA Obj representing matrix A.

5.2. FLAME/C Basics 69

void FLA_Shift_diag(FLA_Conj conj, FLA_Obj alpha, FLA_Obj A);

void FLASH_Shift_diag(FLA_Conj conj, FLA_Obj alpha, FLA_Obj A);

Purpose: Add α (or ᾱ) to the diagonal elements of A.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

Arguments:

conj – Indicates whether the operation proceeds as if alpha were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Scale_diag(FLA_Conj conj, FLA_Obj alpha, FLA_Obj A);

Purpose: Scale the diagonal elements of A by α (or ᾱ).

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

Arguments:

conj – Indicates whether the operation proceeds as if alpha were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Obj_set_real_part(FLA_Obj alpha, FLA_Obj B);

Purpose: Copy the value of real scalar α into the real component of matrix B. If B is real, then
the value in α is simply copied into all elements of B.

Constraints:
• The numerical datatype of α must be real.

• The numerical datatype of B must be floating-point and must not be FLA CONSTANT.

• The precision of the datatype of α must be equal to that of B.

Arguments:

alpha – An FLA Obj representing scalar α.
B – An FLA Obj representing scalar B.

void FLA_Obj_set_imag_part(FLA_Obj alpha, FLA_Obj beta);

Purpose: Copy the value of real scalar α into the imaginary components of matrix B. If B is real,
then no operation is performed.

Constraints:
• The numerical datatype of α must be real.

• The numerical datatype of B must be floating-point and must not be FLA CONSTANT.

• The precision of the datatype of α must be equal to that of B.

Arguments:

alpha – An FLA Obj representing scalar α.
B – An FLA Obj representing scalar B.

70 5. User-level Application Programming Interfaces

5.2.7 Math-related functions

void FLA_Absolute_value(FLA_Obj alpha);

Purpose: Compute the absolute value (or complex norm) of a complex scalar:

α := |α|

where α is a complex scalar and |α| is defined as

|α| =
√
αᾱ

Notes: If α is real, then the operation reduces to

α := |α|

Constraints:
• The numerical datatype of α must be floating-point and must not be FLA CONSTANT.

Arguments:

alpha – An FLA Obj representing scalar α.

void FLA_Absolute_square(FLA_Obj alpha);

Purpose: Compute the absolute square (or squared norm) of a complex scalar:

α := |α|2

where α is a complex scalar and |α|2 is defined as

|α|2 = αᾱ

Notes: If α is real, then the operation reduces to

α := α2

Constraints:
• The numerical datatype of α must be floating-point and must not be FLA CONSTANT.

Arguments:

alpha – An FLA Obj representing scalar α.

5.2. FLAME/C Basics 71

void FLA_Conjugate(FLA_Obj A);

Purpose: Conjugate a matrix:

A := Ā

where A is a general matrix.

Notes: If A is real, then the function has no effect.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

Arguments:

A – An FLA Obj representing matrix A.

void FLA_Conjugate_r(FLA_Uplo uplo, FLA_Obj A);

Purpose: Conjugate the lower or upper triangular portion of a matrix A.

Notes: If A is real, then the function has no effect.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
A – An FLA Obj representing matrix A.

void FLA_Transpose(FLA_Obj A);

Purpose: Transpose a matrix:

A := AT

where A is a general matrix.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?swap().

Arguments:

A – An FLA Obj representing matrix A.

72 5. User-level Application Programming Interfaces

void FLA_Invert(FLA_Conj conj, FLA_Obj x);

Purpose: Invert each element of a vector:

χi := χ−1i

where χi is the ith element of vector x. If conj is FLA CONJUGATE, then each element is
also conjugated:

χi := χ̄i
−1

Constraints:
• The numerical datatype of α must be floating-point and must not be FLA CONSTANT.

• x must be a vector (or a scalar).

Arguments:

conj – Indicates whether to compute the conjugate of the inverse.
alpha – An FLA Obj representing scalar α.

void FLA_Max_abs_value(FLA_Obj A, FLA_Obj amax);

Purpose: Find the maximum absolute value of all elements of a matrix:

Amax := max
ij
|αij |

where Amax is a scalar and αij is the (i, j) element of general matrix A. Upon completion,
the maximum absolute value Amax is stored to amax.

Notes: If A is complex, then |αij | is evaluated as the complex norm, which, for any complex
number z, is defined as

|z| = |x+ iy|
=

√
x2 + iy2

where x and y are the real and imaginary components, respectively, of z.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of Amax must be real and must not be FLA CONSTANT.

• The precision of the datatype of Amax must be equal to that of A.

Arguments:

A – An FLA Obj representing matrix A.
amax – An FLA Obj representing scalar Amax.

5.2. FLAME/C Basics 73

double FLA_Max_elemwise_diff(FLA_Obj A, FLA_Obj B);

double FLASH_Max_elemwise_diff(FLA_Obj A, FLA_Obj B);

Purpose: Find and return the maximum element-wise absolute difference between two matrices,

max
i,j
|αij − βij |

where αij and βij are the (i, j) elements of matrices A and B, respectively.

Notes: If A and B are complex, then they are treated as real matrices for the purposes of
computing the maximum absolute difference. That is, the real and imaginary components
of Aij are compared with the real and imaginary components of Bij , respectively.

Returns: A positive double-precision floating-point value.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• The dimensions of A and B must be conformal.

Arguments:

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

void FLA_Mult_add(FLA_Obj alpha, FLA_Obj beta, FLA_Obj gamma);

Purpose: Multiply two scalars and add the result to a third scalar:

γ := γ + αβ

where α, β, and γ are scalars.

Constraints:
• The numerical datatype of α, β, and γ must be floating-point. Also, the datatype of
γ must not be FLA CONSTANT.

Arguments:

alpha – An FLA Obj representing scalar α.
beta – An FLA Obj representing scalar β.
gamma – An FLA Obj representing scalar γ.

void FLA_Negate(FLA_Obj A);

Purpose: Negate a matrix:

A := −A

where A is a general matrix.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

Arguments:

A – An FLA Obj representing matrix A.

74 5. User-level Application Programming Interfaces

void FLA_Norm1(FLA_Obj A, FLA_Obj norm1);

void FLASH_Norm1(FLA_Obj A, FLA_Obj norm1);

Purpose: Compute the maximum absolute column sum norm of a matrix:

‖A‖1 := max
j

n−1∑
i=0

|αij |

where ‖A‖1 is a scalar and αij is the (i, j) element of general matrix A. Upon completion,
the maximum absolute column sum norm ‖A‖1 is stored to norm1.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of norm1 must be real and must not be FLA CONSTANT.

• The precision of the datatype of norm1 must be equal to that of A.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *asum().

Arguments:

A – An FLA Obj representing matrix A.
norm1 – An FLA Obj representing scalar ‖A‖1.

void FLA_Norm_inf(FLA_Obj A, FLA_Obj norminf);

Purpose: Compute the maximum absolute row sum norm of a matrix:

‖A‖∞ := max
i

n−1∑
i=0

|αij |

where ‖A‖∞ is a scalar and αij is the (i, j) element of general matrixA. Upon completion,
the maximum absolute row sum norm ‖A‖∞ is stored to norminf.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of norminf must be real and must not be FLA CONSTANT.

• The precision of the datatype of norminf must be equal to that of A.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *asum().

Arguments:

A – An FLA Obj representing matrix A.
norminf – An FLA Obj representing scalar ‖A‖∞.

5.2. FLAME/C Basics 75

void FLA_Norm_frob(FLA_Obj A, FLA_Obj norm);

Purpose: Compute the Frobenius norm of a matrix:

‖A‖F :=

√√√√n−1∑
j=0

m−1∑
i=0

|αij |2

where ‖A‖F is a scalar and αij is the (i, j) element of general matrix A. Upon completion,
the Frobenius norm ‖A‖F is stored to norm.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of norm must be real and must not be FLA CONSTANT.

• The precision of the datatype of norm must be equal to that of A.

Arguments:

A – An FLA Obj representing matrix A.
norm – An FLA Obj representing scalar ‖A‖F .

void FLA_Scal_elemwise(FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Perform an element-wise scale of matrix B by matrix A:

βij := αijβij ∀i, j ∈ {0, . . . ,m− 1}, {0, . . . , n− 1}

where αij and βij are the (i, j) elements within matrices A and B, respectively. The
trans argument allows the computation to proceed as if A were conjugated and/or
transposed.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If A and B are vectors, then their lengths must be equal. Otherwise, if trans equals
FLA NO TRANSPOSE or FLA CONJ NO TRANSPOSE, then the dimensions of A and B must
be conformal; otherwise, if trans equals FLA TRANSPOSE or FLA CONJ TRANSPOSE, then
the dimensions of AT and B must be conformal.

Arguments:
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

76 5. User-level Application Programming Interfaces

FLA_Error FLA_Sqrt(FLA_Obj alpha);

Purpose: Compute the square root of a scalar:

α :=
√
α

where α is a positive real scalar.

Returns: FLA SUCCESS if α is non-negative on entry; otherwise FLA FAILURE.

Constraints:
• The numerical datatype of α must be real and must not be FLA CONSTANT.

Arguments:

alpha – An FLA Obj representing scalar α.

void FLA_Random_matrix(FLA_Obj A);

void FLASH_Random_matrix(FLA_Obj A);

Purpose: Overwrite a matrix A with a random matrix.

Notes: If A is complex, then elements are set by assigning separate random values to real and
imaginary components.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Arguments:

A – An FLA Obj representing matrix A.

5.2. FLAME/C Basics 77

void FLA_Random_herm_matrix(FLA_Uplo uplo, FLA_Obj A);

Purpose: Overwrite a matrix A with a random Hermitian matrix, ie: a matrix A such that

A = AH

The uplo argument indicates whether the lower or upper triangle of A is initially stored
by the operation.

Notes: If A is real, then the operation results in a random symmetric matrix. If A is com-
plex, then elements are set by assigning separate random values to real and imaginary
components.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Imp. Notes: Currently, the value of uplo does not determine which triangle is written to. In either
case, the specified triangle is randomized and then conjugate-transposed into the other.
However, a future implementation of FLA Random herm matrix() may only store to the
triangle specified by uplo.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is stored during the

operation. This argument has no net effect on the operation.
A – An FLA Obj representing matrix A.

void FLA_Random_symm_matrix(FLA_Uplo uplo, FLA_Obj A);

Purpose: Overwrite a matrix A with a random symmetric matrix, ie: a matrix A such that

A = AT

The uplo argument indicates whether the lower or upper triangle of A is initially stored
by the operation.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Imp. Notes: Currently, the value of uplo does not determine which triangle is written to. In either
case, the specified triangle is randomized and then transposed into the other. However,
a future implementation of FLA Random symm matrix() may only store to the triangle
specified by uplo.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is stored during the

operation. This argument has no net effect on the operation.
A – An FLA Obj representing matrix A.

78 5. User-level Application Programming Interfaces

void FLA_Random_spd_matrix(FLA_Uplo uplo, FLA_Obj A);

void FLASH_Random_spd_matrix(FLA_Uplo uplo, FLA_Obj A);

Purpose: Overwrite a matrix A with a random symmetric positive definite matrix if A is real, or a
random Hermitian positive definite matrix if A is complex. The uplo argument indicates
whether the lower or upper triangle of A is stored by the operation.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Imp. Notes: If uplo is FLA LOWER TRIANGULAR, then the random matrix A is computed as

A := RRH

where R is a lower triangular. Otherwise, if uplo is FLA UPPER TRIANGULAR, the matrix
is computed as

A := RHR

where R is a upper triangular. In either case, R is generated by
FLA Random tri matrix() to have a unit diagonal.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is stored during the

operation. This argument is currently ignored.
A – An FLA Obj representing matrix A.

void FLA_Random_tri_matrix(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

Purpose: Overwrite a matrix A with a random triangular matrix. The uplo argument indicates
whether A will be lower or upper triangular. The off-diagonal elements of the triangle
specified by uplo are normalized by the order of A (for numerical reasons), and the
opposite triangle is explicitly set to zero. The diag argument indicates how the diagonal
of the matrix is set; FLA ZERO DIAG will set all diagonal entries to zero, FLA UNIT DIAG

will set diagonal entries to one, and FLA NONUNIT DIAG will assign the diagonal random
values.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Arguments:
uplo – Indicates whether the lower or upper triangle of A is stored during the

operation. This argument is currently ignored.
diag – Indicates whether the diagonal of A is set to be zero, unit, or non-unit

(random).

A – An FLA Obj representing matrix A.

5.2. FLAME/C Basics 79

void FLA_Random_unitary_matrix(FLA_Obj A);

Purpose: Overwrite a matrix A with a random unitary matrix.

Imp. Notes: FLA Random unitary matrix() forms a random unitary matrix by first creating a ran-
dom matrix via FLA Random matrix() and then performing a QR factorization on this
matrix via FLA QR UT(). The Householder transforms associatd with the factorization
are then applied to the identity matrix in such a way that minimizes the number of
computations that must take place.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Imp. Notes: The random numbers obtained are unseeded and therefore deterministic. Random num-
bers are obtained from the C standard library function rand(), scaled by RAND MAX, and
shifted to result in a uniform distribution over the interval [−1.0, 1.0).

Arguments:

A – An FLA Obj representing matrix A.

void FLA_Symmetrize(FLA_Uplo uplo, FLA_Obj A);

Purpose: Transform a general matrix A into a symmetric matrix by copying the transpose of one
triangle into the other triangle. The uplo argument indicates which triangle of A is
preserved and copied.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?copy().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is preserved and

transposed into the other triangle.
A – An FLA Obj representing matrix A.

void FLA_Hermitianize(FLA_Uplo uplo, FLA_Obj A);

Purpose: Transform a general complex matrix A into a Hermitian matrix by conjugate-transposing
one triangle into the other triangle and then zeroing the imaginary components of the
diagonal entries. The uplo argument indicates which triangle of A is preserved and
conjugate-transposed.

Notes: If A is real, then FLA Hermitianize() behaves exactly as FLA Symmetrize().

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?copy() and
*scal().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is preserved and

conjugate-transposed into the other triangle.
A – An FLA Obj representing matrix A.

80 5. User-level Application Programming Interfaces

void FLA_Triangularize(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

Purpose: Transform a general matrix A into a triangular matrix by perserving one triangle and
zeroing the other triangle. The uplo argument indicates which triangle of A is pre-
served. The diag argument indicates whether to change the diagonal of the matrix;
FLA ZERO DIAG will set all diagonal entries to zero, FLA UNIT DIAG will set diagonal en-
tries to one, and FLA NONUNIT DIAG will leave the diagonal unchanged.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Arguments:

uplo – Indicates whether the lower or upper triangle of A is preserved.
diag – Indicates whether the diagonal of A is set to be zero, unit, or left

unchanged.
A – An FLA Obj representing matrix A.

5.2.8 Miscellaneous functions

unsigned int FLA_Check_error_level(void);

Purpose: Query the current level of internal error and parameter checking in libflame.
Valid return values are FLA FULL ERROR CHECKING, FLA MIN ERROR CHECKING, and
FLA NO ERROR CHECKING.

Notes: Error and parameter checking will have a small but sometimes noticeable impact on
performance. We recommend full error checking for all users except those who are
performing benchmarks who have already tested their code with error checking fully
enabled. Use reduced error checking at your own risk, and be aware that your application
may exhibit nondeterministic behavior if an error does arise.

Returns: An unsigned integer: FLA FULL ERROR CHECKING if error and parameter checking is fully
enabled; FLA MIN ERROR CHECKING if minimal error and parameter checking is enabled;
FLA NO ERROR CHECKING if error and parameter checking is completely disabled.

unsigned int FLA_Check_error_level_set(unsigned int level);

Purpose: Set the level of internal error and parameter checking in libflame to level.
Valid values for level are FLA FULL ERROR CHECKING, FLA MIN ERROR CHECKING, and
FLA NO ERROR CHECKING. The function returns the previous level of error checking re-
gardless of whether the new value actually caused a change in the level.

Returns: An unsigned integer: FLA FULL ERROR CHECKING if error and parameter checking was
fully enabled; FLA MIN ERROR CHECKING if minimal error and parameter checking was
enabled; FLA NO ERROR CHECKING if error and parameter checking was completely dis-
abled.

Arguments:

level – The value corresponding to the desired error checking level.

5.2. FLAME/C Basics 81

FLA_Bool FLA_Memory_leak_counter_set(FLA_Bool new_status);

Purpose: Set whether the memory leak counter is enabled or disabled. When enabled, the internal
memory allocation functions FLA malloc() and FLA free() increment and decrement,
respectively, an internal counter to keep track of outstanding number of memory regions
still allocated. A positive number indicates a conventional memory leak while a negative
number suggests that at least one region of allocated memory was freed more than once.a

If the counter is enabled upon entering FLA Finalize(), the counter value is output to
standard error. The function returns the previous status of the memory leak counter,
regardless of whether new status actually caused a change in the status.

Notes: If multithreading was enabled at runtime, the update of the internal memory counter is
protected by a lock. Some applications that are intensive in object creation and destruc-
tion may wish to disable the memory leak counter to ensure maximum performance. Of
course, this is only advisable if you are confident that your application has no existing
memory leaks

Returns: A boolean value: TRUE if the memory leak counter is currently enabled; FALSE otherwise.

Arguments:

new status – A boolean value that either enables (TRUE) or disables (FALSE)
libflame memory leak counter.

aThis latter kind of memory leak is more difficult to encounter since most modern C library implementations will disallow
freeing the same memory address twice, usually by posting a fatal error.

void FLA_Print_message(char* message, char* filename, unsigned int line);

Purpose: Print a message to standard output. The function interface assumes that the user
will also want to print out the name of the file and the line number on which the
FLA Print message() invocation appears.

Dev. notes: This function is most often used internally when outputing error messages just before
the library aborts. However, it is general enough to be used by application programmers
as well.

Arguments:

message – A pointer to a string containing the message to output.
filename – A pointer to a string containing the name of the file. This is typically

obtained via the C preprocessor macro FILE .
line – An unsigned integer containing the line number that contained the

invocation of FLA Print message(). This is typically obtained via
the C preprocessor macro LINE .

void FLA_Abort(void);

Purpose: Abort execution of the application and output a corresponding message to standard
error.

Imp. Notes: This function currently is implemented with the standard C library function abort(),
which is often implemented by raising a SIGABRT signal. This usually allows the user to
quickly perform a backtrace of the function stack in a debugger without setting break-
points.

82 5. User-level Application Programming Interfaces

double FLA_Clock(void);

Purpose: Return a value representing the amount of time, in seconds, that has elapsed since an
implementation-defined Epoch. The difference in successive return values may be used
to determine elapsed wall clock time.

Returns: A double-precision floating-point value.

Imp. Notes: When possible, this routine uses architecture-specific code in order to achieve the highest
possible precision. If one of the common architectures is not detected, then the imple-
mentation uses gettimeofday(), which provides microsecond accuracy. The user may
force the use of this more portable gettimeofday() timer function at configure-time
with the configure option --enable-portable-timer. For Microsoft Windows builds
(ie: when FLA ENABLE WINDOWS BUILD is defined) FLA Clock() is implemented in terms
of QueryPerformanceCounter() and QueryPerformanceFrequency().

5.2.9 Advanced query routines

dim_t FLA_Obj_row_offset(FLA_Obj obj);

Purpose: Query the row offset of an object view obj.

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_col_offset(FLA_Obj obj);

Purpose: Query the column offset of an object view obj.

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLA_Obj_base_length(FLA_Obj obj);

Purpose: Query the number of rows in the base object of obj. In other words, query the number
of rows in the object obj as it was originally allocated.

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

5.2. FLAME/C Basics 83

dim_t FLA_Obj_base_width(FLA_Obj obj);

Purpose: Query the number of columns in the base object of obj. In other words, query the
number of columns in the object obj as it was originally allocated.

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

void* FLA_Obj_base_buffer(FLA_Obj obj);

Purpose: Query the starting address of the base object underlying numerical data buffer. The
address of the object is the address that was returned by FLA malloc() when the object
was created and not necessarily the same as the starting address of the object’s view.

Notes: Since the address returned by FLA Obj base buffer() is of type void*, the user must
typecast it to one of the five numerical datatypes supported by the library (int, float,
double, complex, double complex). The correct typecast may be determined with
FLA Obj datatype().

Notes: This routine should only be used by advanced users and developers.

Returns: A pointer of type void*.

Arguments:

obj – An FLA Obj.

size_t FLA_Obj_datatype_size(FLA_Datatype datatype);

Purpose: Query the size, in bytes, of an FLA Datatype value.

Returns: An unsigned integer value of type size t .

Caveats: This is primarily a developer routine and should only be used by people who know what
they are doing.

Arguments:

datatype – An FLA Datatype value.

FLA_Elemtype FLA_Obj_elemtype(FLA_Obj obj);

Purpose: Query the type of the elements contained within an object.

Notes: An object of element type FLA SCALAR is also referred to as a “flat” object. By contrast,
an object of element type FLA MATRIX is considered hierarchical with a depth of at least
one. More information on hierarchical matricies may be found in Section 5.4.

Returns: One of {FLA SCALAR, FLA MATRIX}.

Caveats: This is primarily a developer routine and should only be used by people who know what
they are doing.

Arguments:

obj – An FLA Obj.

84 5. User-level Application Programming Interfaces

size_t FLA_Obj_elem_size(FLA_Obj obj);

Purpose: Query the size, in bytes, of the elements within an FLA Obj.

Returns: An unsigned integer value of type size t .

Caveats: This is primarily a developer routine and should only be used by people who know what
they are doing.

Arguments:

obj – An FLA Obj.

5.3 Managing Views

5.3.1 Vertical partitioning

FLA_Error FLA_Part_2x1(FLA_Obj A, FLA_Obj* AT,

FLA_Obj* AB,

dim_t mb, FLA_Side side);

Purpose: Partition a matrix A into top and bottom side views where the side indicated by side

has mb rows.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
AT

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view into the top side of A.

AB

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view into the bottom side of A.

mb – The number of rows to extract.
side – The side to which to extract mb rows.

FLA_Error FLA_Repart_2x1_to_3x1(FLA_Obj AT, FLA_Obj* A0,

FLA_Obj* A1,

FLA_Obj AB, FLA_Obj* A2,

dim_t mb, FLA_Side side);

Purpose: Repartition a 2× 1 partitioning of matrix A into a 3× 1 partitioning where mb rows are
split from the side indicated by side.

Returns: FLA SUCCESS

Arguments:

AT, AB – FLA Obj structures that were partitioned via FLA Part 2x1().
A0...A2

(on entry) – Pointers to uninitialized FLA Obj structures.
(on exit) – Pointers to FLA Obj views into ATand AB.

mb – The number of rows to extract.
side – The side from which to extract mb rows.

5.3. Managing Views 85

FLA_Error FLA_Cont_with_3x1_to_2x1(FLA_Obj* AT, FLA_Obj A0,

FLA_Obj A1,

FLA_Obj* AB, FLA_Obj A2,

FLA_Side side);

Purpose: Update the 2×1 partitioning of matrix A by moving the boundaries so that A1 is shifted
to the side indicated by side.

Returns: FLA SUCCESS

Arguments:
AT, AB

(on entry) – Pointers to FLA Obj structures that were partitioned via
FLA Part 2x1() that do not yet reflect the repartitioning.

(on exit) – Pointers to FLA Obj structures that were partitioned via
FLA Part 2x1() that reflect the new matrix boundaries.

A0...A2 – FLA Obj structures that were repartitioned via
FLA Part 2x1 to 3x1().

side – The side to which to shift the mb rows of A1.

5.3.2 Horizontal partitioning

FLA_Error FLA_Part_1x2(FLA_Obj A, FLA_Obj* AL, FLA_Obj* AR,

dim_t nb, FLA_Side side);

Purpose: Partition a matrix A into left and right side views where the side indicated by side has
nb columns.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
AL

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view into the left side of A.

AR

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view into the right side of A.

nb – The number of columns to extract.
side – The side to which to extract nb columns.

FLA_Error FLA_Repart_1x2_to_1x3(FLA_Obj AL, FLA_Obj AR,

FLA_Obj* A0, FLA_Obj* A1, FLA_Obj* A2,

dim_t nb, FLA_Side side);

Purpose: Repartition a 1× 2 partitioning of matrix A into a 1× 3 partitioning where nb columns
are split from the side indicated by side.

Returns: FLA SUCCESS

Arguments:

AL, AR – FLA Obj structures that were partitioned via FLA Part 1x2().
A0...A2

(on entry) – Pointers to uninitialized FLA Obj structures.
(on exit) – Pointers to FLA Obj views into ALand AR.

nb – The number of columns to extract.
side – The side from which to extract nb columns.

86 5. User-level Application Programming Interfaces

FLA_Error FLA_Cont_with_1x3_to_1x2(FLA_Obj* AL, FLA_Obj* AR,

FLA_Obj A0, FLA_Obj A1, FLA_Obj A2,

FLA_Side side);

Purpose: Update the 1×2 partitioning of matrix A by moving the boundaries so that A1 is shifted
to the side indicated by side.

Returns: FLA SUCCESS

Arguments:
AL, AR

(on entry) – Pointers to FLA Obj structures that were partitioned via
FLA Part 1x2() that do not yet reflect the repartitioning.

(on exit) – Pointers to FLA Obj structures that were partitioned via
FLA Part 1x2() that reflect the new matrix boundaries.

A0...A2 – FLA Obj structures that were repartitioned via
FLA Part 1x2 to 1x3().

side – The side to which to shift the nb columns of A1.

5.3.3 Bidirectional partitioning

FLA_Error FLA_Part_2x2(FLA_Obj A, FLA_Obj* ATL, FLA_Obj* ATR,

FLA_Obj* ABL, FLA_Obj* ABR,

dim_t mb, dim_t nb, FLA_Quadrant quadrant);

Purpose: Partition a matrix A into four quadrant views where the quadrant indicated by quadrant

is mb× nb.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
ATL...ABR

(on entry) – Pointers to uninitialized FLA Obj structures.
(on exit) – Pointers to FLA Obj views into the four quadrants of A.

mb – The number of rows to extract.
nb – The number of columns to extract.
quadrant – The quadrant to which to extract mb rows and nb columns.

5.3. Managing Views 87

FLA_Error FLA_Repart_2x2_to_3x3(

FLA_Obj ATL, FLA_Obj ATR, FLA_Obj* A00, FLA_Obj* A01, FLA_Obj* A02,

FLA_Obj* A10, FLA_Obj* A11, FLA_Obj* A12,

FLA_Obj ABL, FLA_Obj ABR, FLA_Obj* A20, FLA_Obj* A21, FLA_Obj* A22,

dim_t mb, dim_t nb, FLA_Quadrant quadrant);

Purpose: Repartition a 2 × 2 partitioning of matrix A into a 3 × 3 partitioning where mb × nb

submatrix A11 is split from the quadrant indicated by quadrant.

Returns: FLA SUCCESS

Arguments:

ATL...ABR – FLA Obj structures that were partitioned via FLA Part 2x2().
A00...A22

(on entry) – Pointers to uninitialized FLA Obj structures.
(on exit) – Pointers to FLA Obj views into ATL, ATR, ABL, and ABR.

mb – The number of rows to extract.
nb – The number of columns to extract.
quadrant – The quadrant from which to shift the mb rows and nb columns of A11.

FLA_Error FLA_Cont_with_3x3_to_2x2(

FLA_Obj* ATL, FLA_Obj* ATR, FLA_Obj A00, FLA_Obj A01, FLA_Obj A02,

FLA_Obj A10, FLA_Obj A11, FLA_Obj A12,

FLA_Obj* ABL, FLA_Obj* ABR, FLA_Obj A20, FLA_Obj A21, FLA_Obj A22,

FLA_Quadrant quadrant);

Purpose: Update the 2×2 partitioning of matrix A by moving the boundaries so that A11 is shifted
to the quadrant indicated by quadrant.

Returns: FLA SUCCESS

Arguments:
ATL...ABR

(on entry) – Pointers to FLA Obj structures that were partitioned via
FLA Part 2x2() that do not yet reflect the repartitioning.

(on exit) – Pointers to FLA Obj structures that were partitioned via
FLA Part 2x2() that reflect the new matrix boundaries.

A00...A22 – FLA Obj structures that were repartitioned via
FLA Part 2x2 to 3x3().

quadrant – The quadrant to which to shift the mb rows and nb columns of A11.

88 5. User-level Application Programming Interfaces

5.3.4 Merging views

FLA_Error FLA_Merge_2x1(FLA_Obj AT,

FLA_Obj AB, FLA_Obj* A);

Purpose: Merge a 2× 1 set of adjacent matrix views into a single view.

Constraints:
• AT and AB must be views into the same object.

• AT and AB must be vertically adjacent and vertically aligned.

• AT and AB must have an equal number of columns.

Returns: FLA SUCCESS

Arguments:

AT, AB – Valid FLA Obj views eligible for merging.
A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view that represents the merging of AL and

AR.

FLA_Error FLA_Merge_1x2(FLA_Obj AL, FLA_Obj AR, FLA_Obj* A);

Purpose: Merge a 1× 2 set of adjacent matrix views into a single view.

Constraints:
• AL and AR must be views into the same object.

• AL and AR must be horizontally adjacent and horizontally aligned.

• AL and AR must have an equal number of rows.

Returns: FLA SUCCESS

Arguments:

AL, AR – Valid FLA Obj views eligible for merging.
A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view that represents the merging of AT and

AB.

5.4. FLASH 89

FLA_Error FLA_Merge_2x2(FLA_Obj ATL, FLA_Obj ATR,

FLA_Obj ABL, FLA_Obj ABR, FLA_Obj* A);

Purpose: Merge a 2× 2 set of adjacent matrix views into a single view.

Constraints:
• ATL, ATR, ABL, and ABR must be views into the same object.

• The number of rows in ATL and ABL must equal that of ATR and ABR, respectively.

• The number of columns in ATL and ATR must equal that of ABL and ABR , respectively.

• ATL and ATR must be vertically adjacent and vertically aligned to ABL and ABR,
respectively.

• ATL and ABL must be horizontally adjacent and horizontally aligned to ATR and ABR,
respectively.

Returns: FLA SUCCESS

Arguments:

ATL...ABR – Valid FLA Obj views to be merged.
A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to an FLA Obj view that represents the merging of ATL, ABL,

ATR, and ABR.

5.4 FLASH

5.4.1 Motivation

Traditionally, dense matrices are stored in column-major order (or, alternatively, in row-major order). That
is, matrices are stored as a sequence of columns, with the elements of the jth column is stored contiguously,
beginning at memory location ldimj, where ldim is the leading dimension of the matrix. This particular
storage scheme works fine for matrices small enough to fit in the processor’s level-2 cache [21, 22]. However,
for larger matrices, the larger leading dimensions result in attenuated performance. The cause is primarly
due to lack of spacial locality across columns and increased TLB misses from accessing a larger region of
memory [21].

Alternative data storage schemes have been explored thoroughly. In particular, storage-by-blocks has
shown promise as a storage scheme capable of delivering higher performance. The idea, in principle, is
straightforward: instead of storing the entire matrix column-major order, store individual blocks of the
matrix contiguously.4 When paired with an algorithm that performs its computation on individual blocks,
this storage scheme can reduce cache and TLB misses and result in better performance.

However, at the time of this writing, storage-by-blocks is not widely used. The most likely reason stems
from the difficulty of indexing directly into the submatrices. Storage-by-blocks tends to require complicated
indexing expressions, which further obfuscates the algorithm as expressed in its implementation. This
inability to easily index into the matrix makes it difficult to even initialize the matrix, let alone implement
an algorithm that operate upon it. Thus, the unpleasantness of storage-by-blocks is felt by both the library
implementor and the user alike.

The FLAME project presents a solution to this problem in [29]. As an extension to libflame, the FLASH
API provides a set of interfaces that allows a user to create, initialize, and compute with matrices stored
by blocks. More generally, FLASH provides an interfaces for managing hierarchical matricies, which, when
set to contain one level of hierarchy, allows us to easily implement storage-by-blocks. For now, FLASH only
supports one level of hierarchy, but in principle multiple levels have potential applications for out-of-core
computation and sparse matrix storage. The FLAME project intends to investigate these possibilities in
future research.

4Presumably, each of these individual blocks would be stored in column-major order, but row-major order is also possible.
Actually, the exact storage scheme of the blocks is not important, as long as they are stored in a manner that is compatible
with the computational kernels that will operate upon the blocks.

90 5. User-level Application Programming Interfaces

5.4.2 Concepts

This section is devoted to introducing and defining various concepts that will reoccur throughout our de-
scriptions of the FLASH API.

• Conventional object. Conventional objects, also known as “flat” objects, are those which are created
using the traditional FLAME/C API. In libflame, flat objects store their numerical data contiguously,
in column-major.

• Hierarchy. The hierarchy of a matrix refers to the internal tree-like structure of object that represents
and stores the matrix.

• Hierarchical object. Hierarchical objects, also referred to as objects “stored by blocks”, are those which
are created using the FLASH API. Hierachical objects contain a matrix hierarchy.

• Block. A block is a submatrix numerical data which is typically a part of a larger hierarchical matrix.
Individual blocks almost always use a column-major storage scheme.

• Node. Since matrix hierarchies resemble trees, we sometimes use “node” as a synonym to refer to
objects within a matrix hierarchy.

• Element. Elements are the immediate constituent members of a matrix object. The nature of an
object’s elements is determined by the element type, which may be either FLA SCALAR or FLA MATRIX.
The former identifies a matrix object which contains numerical data while the later refers to a matrix
object whose elements are themselves references to other submatrix objects.

• Leaf object. The leaf object is an object in a matrix hierarchy that encapsulates a submatrix whose
elements contains actual numerical data (ie: an object which encapsulates a block). Leaf objects always
have an element type of FLA SCALAR.

• Non-leaf object. A non-leaf object is an object in a matrix hierarchy that encapsulates a submatrix
whose elements contains references to other objects. Non-leaf objects always have an element type of
FLA MATRIX. In libflame, non-leaf objects store their elements in column-major order.

• Child object. Child objects are those objects referred to by the elements contained within a non-
leaf object. Child objects may contain additional levels of hierarchy (if they are of element type
FLA MATRIX) or they may encapsulate numerical data (if they are of element type FLA SCALAR). Only
non-leaf objects may have child objects.

• Root object. The root object of a matrix hierarchy corresponds to the top-level stucture that is visible
to the user. When a root object is also a leaf object, then the matrix has no hierarchy and thus is
effectively equivalent to a matrix object stored conventionally in column-major order.

• Depth. The depth of a matrix hierarchy is defined as the distance from the root object to any leaf
object5. A depth of zero means the object has no hierarchy.

• Level. A level in a hierarchy refers to all objects that are some constant distance from the root. Level
0 refers to the root object, level 1 refers to the childen of the root object, and so on.

• Element length. The element length, also referred to as simply “the length”, of an object refers to the
number of element rows within the object, where these elements may be contiguous blocks or references
to deeper portions of the matrix hierarchy.

• Element width. The element width, also referred to as simply “the width”, of an object refers to the
number of element columns within the object. The semantics are otherwise identical to that of element
length.

5Currently, the FLASH API assumes that all leaf objects are equidistant from the root. This may change in a future revision.

5.4. FLASH 91

• Scalar length. The scalar length of a hierarchical object refers to the number of rows in the matrix
that the object represents. We distinguish between this from the element length of the object, which
refers to the number of rows of elements in the object at that level in the hierarchy. Put another way,
the scalar length is a property of the matrix as a mathematical entity, while the element length is
a property of an individual node within the hierarchy that represents the matrix. As such, the user
is typically only concerned with the scalar length of an object, while developers of libflame must
routinely query both the scalar length and element length of hierarchical objects.

• Scalar width. The scalar width of a hierarchical object refers to the number of columns in the matrix
that the object represents. The semantics are otherwise identical to those of scalar length.

• Blocksize. The blocksize is a property of a non-leaf object, and refers to the element dimensions of
its child objects. Specifically, it refers to the element length and width of the child objects, not the
element length and width. The blocksize(s) used by a hierarchical object are set when the object is
created and may not be subsequently changed.

• Hierarchical conformality. Two objects A and B are hierarchically conformal when the following
conditions are satisfied:

– The depth of A is equal to the depth of B.

– For every level in the hierarchies of both objects, the element length and/or width of A equals
the corresponding dimension of B. Whether only the element lengths are equal, or only the
element widths are equal, or that they are both equal, depends on the context. In a matrix-
matrix multiply operation C = C + AB, hierarchical conformality requires, for every level, that:
the element length of A must equal the element length of C; the element width of A equal the
element length of B; and the element width of B equal the element width of C. Alternately, in
the context of the triangular matrix multiply operation B := LB, where L is a lower triangular
matrix, hierarchical conformality only requires the element length (which equals the element width
because L is square) of L equal the element length of B.

Almost all FLASH functions that involve two matrix arguments require that the matrices be hierar-
chically conformal.

5.4.3 Interoperability with FLAME/C

The FLASH API is an extension to the base FLAME/C interfaces. That is, from the perspective of the
library developer, FLASH employs much of the internal machinery present in the FLAME/C framework.
However, objects that are created as hierarchical objects via any of the FLASH object creation routines
should not be used with any of the base FLAME/C interfaces except by developers and other experts who
know what they are doing. The FLASH API includes a basic but complete set of routines for creating,
destroying, querying, and managing hierarchical objects. The API also provides computational routines
that support the matrices stored by blocks. As a general rule of thumb, once a hierarchical object has been
created the user should only use that object with routines that begin with the FLASH prefix.

The FLASH API, as written, should accept flat matrix objects without any problems. When a flat matrix
is passed into a FLASH routine, the underlying implementation simply invokes the appropriate code for a
flat matrix object.

The remaining subsections, 5.4.4 through 5.4.7, document the core set of APIs provided by FLASH. The
computational routines are documented alongside their conventional FLAME/C brethren in Section 5.6.

92 5. User-level Application Programming Interfaces

5.4.4 Object creation and destruction

void FLASH_Obj_create(FLA_Datatype datatype, dim_t m, dim_t n, dim_t depth,

dim_t* b_mn, FLA_Obj* H);

Purpose: Create a new hierarchical object from an uninitialized FLA Obj structure. Upon return-
ing, H points to a valid heap-allocated object that refers to a m×n matrix of numerical
datatype datatype. Furthermore, H will have a hierarchical depth of depth and the
value in b mn[i] will specify the square blocksizes for the i+ 1th level of the hierarchy.
Only the first depth values of b mn will be referenced.

Notes: If depth > 0, the matrix will be hierarchical. In this case, the dimensions of the root
matrix are not explicitly specified and instead are determined by the blocksizes at each
hierarchical level combined with the dimensions of the overall hierarchical matrix. If
depth = 0, the matrix will be flat and have no hierarchy, in which case the dimensions
of the root matrix are the same as the dimensions of the overall matrix.

Constraints:
• Neither m nor n may be zero.

• datatype may not be FLA CONSTANT.

• The pointer arguments b mn and H must not be NULL.

• Each of the first depth values in b mn must be greater than zero.

Imp. Notes: FLASH Obj create() creates hierarchical objects with leaf and non-leaf nodes in column-
major order.

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
depth – The number of levels to create in the hierarchy of H.
b mn – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchy of H.
H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by datatype,

m, n, depth, and b mn.

5.4. FLASH 93

void FLASH_Obj_create_ext(FLA_Datatype datatype, dim_t m, dim_t n, dim_t depth,

dim_t* b_m, dim_t* b_n, FLA_Obj* H);

Purpose: Create a new hierarchical object from an uninitialized FLA Obj structure. Upon return-
ing, H points to a valid heap-allocated object that refers to a m×n matrix of numerical
datatype datatype. Furthermore, H will have a hierarchical depth of depth and the val-
ues in b m[i] and b n[i] will specify the blocksizes in the row and column dimension,
respectively, for the i+ 1th level of the hierarchy. Only the first depth values of b m and
b n will be referenced.

Notes: If depth > 0, the matrix will be hierarchical. In this case, the dimensions of the root
matrix are not explicitly specified and instead are determined by the row and column
blocksizes at each hierarchical level combined with the dimensions of the overall hierar-
chical matrix. If depth = 0, the matrix will be flat and have no hierarchy, in which case
the dimensions of the root matrix are the same as the dimensions of the overall matrix.

Constraints:
• Neither m nor n may be zero.

• datatype may not be FLA CONSTANT.

• The pointer arguments b m, b n, and H must not be NULL.

• Each of the first depth values in b m and b n must be greater than zero.

Imp. Notes: FLASH Obj create ext() creates hierarchical objects with leaf and non-leaf nodes in
column-major order.

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
depth – The number of levels to create in the hierarchy of H.
b m – A pointer to an array of depth values to be used as the row dimensions

of the blocksizes needed when creating the matrix hierarchy of H.
b n – A pointer to an array of depth values to be used as the column di-

mensions of the blocksizes needed when creating the matrix hierarchy
of H.

H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by datatype,

m, n, depth, b m, and b n.

94 5. User-level Application Programming Interfaces

void FLASH_Obj_create_conf_to(FLA_Trans trans, FLA_Obj H_cur, FLA_Obj* H_new);

Purpose: Create a new hierarchical object with the same datatype, dimensions, depth, and block-
sizes as an existing hierarchical object. The user may optionally create the object pointed
to by H new with the m and n dimensions transposed by specifying FLA TRANSPOSE for
the trans argument.

Notes: This function does not initialize the contents of H new.

Constraints:
• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Arguments:
trans – Indicates whether to create the object pointed to by H new with trans-

posed dimensions.
H cur – An existing hierarchical FLA Obj.
H new

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the

datatype, dimensions, depth, and blocksizes of H cur.

void FLASH_Obj_create_copy_of(FLA_Trans trans, FLA_Obj H_cur, FLA_Obj* H_new);

Purpose: Create a new hierarchical object with the same datatype, dimensions, depth, and block-
sizes as an existing hierarchical object. The user may optionally create the object pointed
to by H new with the m and n dimensions transposed by specifying FLA TRANSPOSE for
the trans argument. After H new is created, it is initialized with the contents of H cur,
applying a transposition according to trans.

Constraints:
• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Arguments:
trans – Indicates whether to create the object pointed to by H new with trans-

posed dimensions.
H cur – An existing hierarchical FLA Obj.
H new

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the

datatype, dimensions, depth, and blocksizes of H cur with its numeri-
cal contents identical to that of H cur.

void FLASH_Obj_free(FLA_Obj* H);

Purpose: Release all resources allocated to a hierarchical object. FLASH Obj free()

must only be used with objects that were allocated with FLASH Obj create(),
FLASH Obj create conf to(), FLASH Obj create hier conf to flat(), or
FLASH Obj create hier copy of flat(). Upon returning, H points to a structure
which is, for all intents and purposes, uninitialized.

Notes: If the object was created with FLASH Obj create without buffer(), you should free
the object with FLASH Obj free without buffer().

Arguments:
H

(on entry) – A pointer to a valid hierarchical FLA Obj.
(on exit) – A pointer to an uninitialized FLA Obj.

5.4. FLASH 95

5.4.5 Interfacing with flat matrix objects

void FLASH_Obj_create_hier_conf_to_flat(FLA_Trans trans, FLA_Obj F, dim_t depth,

dim_t* b_mn, FLA_Obj* H);

Purpose: Create a new hierarchical object H with the same datatype and dimensions as an existing
flat object F . The function will create H with a matrix hierarchy specified by the depth
and blocksize arguments depth and b mn. The user may optionally create H with the m
and n dimensions transposed by specifying FLA TRANSPOSE for the trans argument.

Notes: This function does not initialize the contents of H.

Constraints:
• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The pointer arguments b mn and H must not be NULL.

• Each of the first depth values in b mn must be greater than zero.

Arguments:
trans – Indicates whether to create the object pointed to byH with transposed

dimensions.
F – An existing flat FLA Obj representing matrix F .
depth – The number of levels to create in the hierarchy of H.
b mn – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchy of H.
H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the datatype

and dimensions of F , depth, and b mn.

96 5. User-level Application Programming Interfaces

void FLASH_Obj_create_hier_conf_to_flat_ext(FLA_Trans trans, FLA_Obj F, dim_t depth,

dim_t* b_m, dim_t* b_n, FLA_Obj* H);

Purpose: Create a new hierarchical object H with the same datatype and dimensions as an existing
flat object F . The function will create H with a matrix hierarchy specified by the depth
and blocksize arguments depth, b m, and b n. The user may optionally create H with the
m and n dimensions transposed by specifying FLA TRANSPOSE for the trans argument.

Notes: This function does not initialize the contents of H.

Constraints:
• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The pointer arguments b m, b n, and H must not be NULL.

• Each of the first depth values in b m and b n must be greater than zero.

Arguments:
trans – Indicates whether to create the object pointed to byH with transposed

dimensions.
F – An existing flat FLA Obj representing matrix F .
depth – The number of levels to create in the hierarchy of H.
b m – A pointer to an array of depth values to be used as the row dimensions

of the blocksizes needed when creating the matrix hierarchy of H.
b n – A pointer to an array of depth values to be used as the column di-

mensions of the blocksizes needed when creating the matrix hierarchy
of H.

H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the datatype

and dimensions of F , depth, b m, and b n.

void FLASH_Obj_create_hier_copy_of_flat(FLA_Obj F, dim_t depth,

dim_t* b_mn, FLA_Obj* H);

Purpose: Create a new hierarchical object H with the same datatype and dimensions as an existing
flat object F and then copy the numerical contents of F to H. The function will create
H with a matrix hierarchy specified by the depth and blocksize arguments depth and
b mn.

Constraints:
• The pointer arguments b mn and H must not be NULL.

• Each of the first depth values in b mn must be greater than zero.

Arguments:

F – An existing flat FLA Obj representing matrix F .
depth – The number of levels to create in the hierarchy of H.
b mn – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchy of H.
H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the datatype

and dimensions of F , depth, and b mn, and which contains the contents
of the flat matrix F .

5.4. FLASH 97

void FLASH_Obj_create_hier_copy_of_flat_ext(FLA_Obj F, dim_t depth,

dim_t* b_m, dim_t* b_n, FLA_Obj* H);

Purpose: Create a new hierarchical object H with the same datatype and dimensions as an existing
flat object F and then copy the numerical contents of F to H. The function will create
H with a matrix hierarchy specified by the depth and blocksize arguments depth, b m,
and b n.

Constraints:
• The pointer arguments b m, b n, and H must not be NULL.

• Each of the first depth values in b m and b n must be greater than zero.

Arguments:

F – An existing flat FLA Obj representing matrix F .
depth – The number of levels to create in the hierarchy of H.
b m – A pointer to an array of depth values to be used as the row dimensions

of the blocksizes needed when creating the matrix hierarchy of H.
b n – A pointer to an array of depth values to be used as the column di-

mensions of the blocksizes needed when creating the matrix hierarchy
of H.

H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj parameterized by the datatype

and dimensions of F , depth, b m, and b n, and which contains the
contents of the flat matrix F .

void FLASH_Obj_create_flat_conf_to_hier(FLA_Trans trans, FLA_Obj H, FLA_Obj* F);

Purpose: Create a new flat object F with the same datatype and dimensions as an existing flat
object H. The user may optionally create F with the m and n dimensions transposed
by specifying FLA TRANSPOSE for the trans argument.

Notes: This function does not initialize the contents of F .

Constraints:
• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

• The pointer argument F must not be NULL.

Arguments:
trans – Indicates whether to create the object pointed to by F with transposed

dimensions.
H – An existing hierarchical FLA Obj representing matrix H.
F

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new flat FLA Obj parameterized by the datatype and

dimensions of F .

98 5. User-level Application Programming Interfaces

void FLASH_Obj_create_flat_copy_of_hier(FLA_Obj H, FLA_Obj* F);

Purpose: Create a new flat object F with the same datatype and dimensions as an existing hier-
archical object H and then copy the numerical contents of F to H.

Constraints:
• The pointer argument F must not be NULL.

Arguments:

H – An existing hierarchical FLA Obj representing matrix H.
F

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new flat FLA Obj parameterized by the datatype and

dimensions of F , and which contains the contents of the hierarchical
matrix F .

void FLASH_Copy_buffer_to_hier(dim_t m, dim_t n, void* F, dim_t rs, dim_t cs,

dim_t i, dim_t j, FLA_Obj H);

Purpose: Copy the contents of an conventional column-major matrix F with row and column
strides rs and cs into the submatrix Hij whose top-left element is the (i, j) entry of
hierarchical matrix H, where both F and Hij are m× n.

Notes: The user should ensure that the numerical datatype used in F is the same as the datatype
used when H was created.

Constraints:
• The numerical datatype of H must not be FLA CONSTANT.

• H must be at least i+m× j + n.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• The pointer argument F must not be NULL.

Arguments:

m – The number of rows to copy from F to Hij .
n – The number of columns to copy from F to Hij .
F – A pointer to the first element in conventional column-major matrix F .

rs – The row stride of F .
cs – The column stride of F .
i – The row offset in H of the submatrix Hij .
j – The column offset in H of the submatrix Hij .
H – A hierarchical FLA Obj representing matrix H.

5.4. FLASH 99

void FLASH_Copy_hier_to_buffer(dim_t i, dim_t j, FLA_Obj H,

dim_t m, dim_t n, void* F, dim_t rs, dim_t cs);

Purpose: Copy the contents of the submatrix Hij whose top-left element is the (i, j) entry of
hierarchical matrix H into an conventional column-major matrix F with row and column
strides rs and cs, where both Hij and F are m× n.

Notes: The user should be aware of the numerical datatype of H and then access F accordingly.

Constraints:
• The numerical datatype of H must not be FLA CONSTANT.

• H must be at least i+m× j + n.

• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be
equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

• The pointer argument F must not be NULL.

Arguments:

i – The row offset in H of the submatrix Hij .
j – The column offset in H of the submatrix Hij .
H – A hierarchical FLA Obj representing matrix H.
m – The number of rows to copy from Hij to F .
n – The number of columns to copy from Hij to F .
F – A pointer to the first element in conventional column-major matrix F .

rs – The row stride of F .
cs – The column stride of F .

void FLASH_Copy_flat_to_hier(FLA_Obj F, dim_t i, dim_t j, FLA_Obj H);

Purpose: Copy the contents of a flat matrix F into the submatrix Hij whose top-left element is
the (i, j) entry of hierarchical matrix H, where both F and Hij are m× n.

Constraints:
• The numerical datatypes of F and H must be identical and must not be FLA CONSTANT.

• H must be at least i+m× j + n.

Arguments:

F – A flat FLA Obj representing matrix F .
i – The row offset in H of the submatrix Hij .
j – The column offset in H of the submatrix Hij .
H – A hierarchical FLA Obj representing matrix H.

void FLASH_Copy_hier_to_flat(dim_t i, dim_t j, FLA_Obj H, FLA_Obj F);

Purpose: Copy the contents of the submatrix Hij whose top-left element is the (i, j) entry of
hierarchical matrix H into a flat matrix F , where both Hij and F are m× n.

Constraints:
• The numerical datatypes of F and H must be identical and must not be FLA CONSTANT.

• H must be at least i+m× j + n.

Arguments:

i – The row offset in H of the submatrix Hij .
j – The column offset in H of the submatrix Hij .
H – A hierarchical FLA Obj representing matrix H.
F – A flat FLA Obj representing matrix F .

100 5. User-level Application Programming Interfaces

void FLASH_Obj_hierarchify(FLA_Obj F, FLA_Obj H);

Purpose: Copy the contents of a flat matrix F into a hierarchical matrix H, where both H and F
are m× n.

Constraints:
• The numerical datatypes of F and H must be identical and must not be FLA CONSTANT.

• H must be at least m× n.

Imp. Notes: This function is currently implemented as:
FLASH Copy subobject to object(F, 0, 0, H);

Arguments:

F – A flat FLA Obj representing matrix F .
H – A hierarchical FLA Obj representing matrix H.

void FLASH_Obj_flatten(FLA_Obj H, FLA_Obj F);

Purpose: Copy the contents of a hierarchical matrix H into a flat matrix F , where both H and F
are m× n.

Constraints:
• The numerical datatypes of F and H must be identical and must not be FLA CONSTANT.

• H must be at least m× n.

Imp. Notes: This function is currently implemented as:
FLASH Copy object to subobject(0, 0, F, H);

Arguments:

H – A hierarchical FLA Obj representing matrix H.
F – A flat FLA Obj representing matrix F .

5.4. FLASH 101

5.4.6 Interfacing with conventional matrix arrays

void FLASH_Obj_create_without_buffer(FLA_Datatype datatype, dim_t m, dim_t n,

dim_t depth, dim_t* b_mn, FLA_Obj* H);

Purpose: Create a new hierarchical object from an uninitialized FLA Obj structure, just as with
FLASH Obj create(), except without any internal numerical data buffer. Before using
the object, the user must attach a valid buffer with FLASH Obj attach buffer().

Constraints:
• Neither m nor n may be zero.

• datatype may not be FLA CONSTANT.

• The pointer arguments b mn and H must not be NULL.

• Each of the first depth values in b mn must be greater than zero.

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
depth – The number of levels of hierarchy in the object that represents matrix

H.
b mn – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchy of H.
H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new, bufferless hierarchical FLA Obj parameterized by

m, n, depth, b mn, and datatype.

102 5. User-level Application Programming Interfaces

void FLASH_Obj_create_without_buffer_ext(FLA_Datatype datatype, dim_t m, dim_t n,

dim_t depth, dim_t* b_m, dim_t* b_n,

FLA_Obj* H);

Purpose: Create a new hierarchical object from an uninitialized FLA Obj structure, just as with
FLASH Obj create ext(), except without any internal numerical data buffer. Before
using the object, the user must attach a valid buffer with FLASH Obj attach buffer().

Constraints:
• Neither m nor n may be zero.

• datatype may not be FLA CONSTANT.

• The pointer arguments b m, b n, and H must not be NULL.

• Each of the first depth values in b m and b n must be greater than zero.

Arguments:

datatype – A constant corresponding to the numerical datatype requested.
m – The number of rows to be created in new object.
n – The number of columns to be created in the new object.
depth – The number of levels of hierarchy in the object that represents matrix

H.
b m – A pointer to an array of depth values to be used as the row dimensions

of the blocksizes needed when creating the matrix hierarchy of H.
b n – A pointer to an array of depth values to be used as the column di-

mensions of the blocksizes needed when creating the matrix hierarchy
of H.

H

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new, bufferless hierarchical FLA Obj parameterized by

m, n, depth, b m, b n, and datatype.

void FLASH_Obj_free_without_buffer(FLA_Obj* H);

Purpose: Release all resources allocated to a hierarchical object that was created without a data
buffer. FLASH Obj free without buffer() should be used only with objects that were
allocated FLASH Obj create without buffer(). Upon returning, obj points to a struc-
ture which is, for all intents and purposes, uninitialized.

Notes: If the object was created with FLASH Obj create() or FLASH Obj create conf to(),
you should free the object with FLASH Obj free().

Arguments:
H

(on entry) – A pointer to a valid hierarchical FLA Obj.
(on exit) – A pointer to an uninitialized FLA Obj.

5.4. FLASH 103

void FLASH_Obj_attach_buffer(void* buffer, dim_t rs, dim_t cs, FLA_Obj* H);

Purpose: Attach a user-allocated region of memory to a hierarchical object that was created with
FLASH Obj create without buffer(). This routine is useful when the user, either by
preference or necessity, wishes to allocate and/or initialize memory for linear algebra ob-
jects before encapsulating the data within a hierarchical object structure. Note that it
is important that the user submit the correct row and column strides rs and cs, which,
combined with the m and n dimensions submitted when the object was created, will
determine what region of memory is accessible. A leading dimension which is inadver-
tantly set too large may result in memory accesses outside of the intended region during
subsequent computation, which will likely cause undefined behavior.

Notes: When you are finished using a hierarchical FLA Obj with an attached buffer, you should
free it with FLASH Obj free without buffer(). However, you are still responsible for
freeing the memory pointed to by buffer using free() or whatever memory deallocation
function your system provides.

Constraints:
• rs and cs must either both be zero, or non-zero. Also, one of the two strides must be

equal to 1. If rs is equal to 1, then cs must be at least m; otherwise, if cs is equal to
1, then rs must be at least n.

Caveats: This routine is not an ideal way to retrofit hierarchical storage into your application. The
problem is that a “native” hierarchical object, one which was created with its own data
buffer, will contain leaf objects that refer to blocks that are contiguous in memory, which
provides performance benefits in the way of spacial locality. If a user creates a hierarchical
object without a buffer and then attaches an existing matrix stored conventionally, the
memory referred to by individual leaf objects will not be contiguous due to the large
leading dimension (row or column stride) of the conventional matrix. Therefore, we
highly encourage users to create hierarchical matrices one of two other ways:

• Use FLASH Obj create() and then initialize the matrix elements incre-
mentally, one submatrix at a time, with FLASH Copy flat to hier() or
FLASH Copy buffer to hier().

• Use FLASH Obj create hier copy of flat() to create a hierarchical object and
initialize it with the contents of an existing flat object.

Arguments:
buffer – A valid region of memory allocated by the user. Typically, the address

to this memory is obtained dynamically through a system function
such as malloc(), but the memory may also be statically allocated.

rs – The row stride of the matrix stored conventionally in buffer.
cs – The column stride of the matrix stored conventionally in buffer.
H

(on entry) – A pointer to a valid hierarchical FLA Obj that was created without a
buffer.

(on exit) – A pointer to a valid hierarchical FLA Obj that encapsulates the data
in buffer.

104 5. User-level Application Programming Interfaces

5.4.7 Object query functions

FLA_Datatype FLASH_Obj_datatype(FLA_Obj H);

Purpose: Query the numerical datatype of H. This corresponds to the numerical datatype of the
data stored at the leaves of the matrix hierarchy.

Notes: Using FLASH Obj datatype() on a flat matrix will return the same value as
FLA Obj datatype().

Returns: A constant of type FLA Datatype.

Arguments:

H – An FLA Obj representing matrix H.

dim_t FLASH_Obj_scalar_length(FLA_Obj H);

Purpose: Query the scalar length of object view H. That is, query the number of rows in the view
represented by H.

Notes: Using FLASH Obj scalar length() on a flat matrix will always return the correct value
(ie: the same as that returned by FLA Obj length()). However, using FLA Obj length()

on a hierarchical matrix will return the number of rows of child objects within the the
top level of the hierarchy of H. The user should be aware of the difference, as the latter
situation is usually only of interest to developers.

Returns: An unsigned integer value of type dim t representing the number of rows in H.

Arguments:

H – An FLA Obj representing matrix H.

dim_t FLASH_Obj_scalar_width(FLA_Obj H);

Purpose: Query the scalar width of object view H. That is, query the number of columns in the
view represented by H.

Notes: Using FLASH Obj scalar width() on a flat matrix will always return the correct value
(ie: the same as that returned by FLA Obj width()). However, using FLA Obj width()

on a hierarchical matrix will return the number of columns of child objects within the
the top level of the hierarchy of H. The user should be aware of the difference, as the
latter situation is usually only of interest to developers.

Returns: An unsigned integer value of type dim t representing the number of columns in H.

Arguments:

H – An FLA Obj representing matrix H.

5.4. FLASH 105

dim_t FLASH_Obj_depth(FLA_Obj H);

Purpose: Query the depth of the object representing matrix H. This corresponds to the number
of links between the root the hierarchy and the leaf objects. A depth of zero indicates
that H is a flat matrix.

Notes: Using FLASH Obj depth() on a flat matrix will always return 0.

Imp. Notes: This routine assumes that all leaves are equidistant from the root object H.

Returns: An unsigned integer value of type dim t representing the depth of the hierarchy within
the object representing matrix H.

Arguments:

H – An FLA Obj representing matrix H.

dim_t FLASH_Obj_blocksizes(FLA_Obj H, dim_t* b_m, dim_t* b_n);

Purpose: Query the row and column blocksizes used at each level of hierarchy within the object
that represents matrix H and store the values within the array pointed to by b m and
b n. The number of values stored to b m and b n will be equal to the depth of H, which
is returned by the function.

Notes: If H is a flat matrix, then no values are written to b m or b n and zero is returned. It
is important that the length of the b m and b n arrays be sufficiently large to handle the
depth of H.

Returns: An unsigned integer value of type dim t representing the depth of H and number of
blocksizes stored to the b m and b n arrays.

Arguments:

H – An FLA Obj representing matrix H.
b m – A pointer to an array of unsigned integers in which to store the row

blocksizes of the matrix hierarchy of H.
b n – A pointer to an array of unsigned integers in which to store the column

blocksizes of the matrix hierarchy of H.

dim_t FLASH_Obj_scalar_min_dim(FLA_Obj obj);

Purpose: Query the smaller of the hierarchical object view’s scalar length and width dimensions.

Notes: Using FLASH Obj scalar min dim() on a flat matrix will return the same value as
FLA Obj min dim().

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

106 5. User-level Application Programming Interfaces

dim_t FLASH_Obj_scalar_max_dim(FLA_Obj obj);

Purpose: Query the larger of the hierarchical object view’s scalar length and width dimensions.

Notes: Using FLASH Obj scalar max dim() on a flat matrix will return the same value as
FLA Obj max dim().

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

dim_t FLASH_Obj_base_scalar_length(FLA_Obj H);

Purpose: Query the scalar length of the base object within H. That is, query the number of rows
in the matrix represented by the object H as it was originally allocated.

Notes: Using FLASH Obj base scalar length() on a flat matrix will return the same value as
FLA Obj base length().

Returns: An unsigned integer value of type dim t representing the number of rows in the base
object of H.

Arguments:

H – An FLA Obj representing matrix H.

dim_t FLASH_Obj_base_scalar_width(FLA_Obj H);

Purpose: Query the scalar width of the base object within H. That is, query the number of
columns in the matrix represented by the object H as it was originally allocated.

Notes: Using FLASH Obj base scalar width() on a flat matrix will return the same value as
FLA Obj base width().

Returns: An unsigned integer value of type dim t representing the number of columns in the base
object of H.

Arguments:

H – An FLA Obj representing matrix H.

dim_t FLASH_Obj_scalar_row_offset(FLA_Obj obj);

Purpose: Query the scalar row offset of an object view obj. That is, query the row offset of the
view relative to the top-left corner of the underlying hierarchical matrix.

Notes: Using FLASH Obj scalar row offset() on a flat matrix will return the same value as
FLA Obj row offset().

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

5.4. FLASH 107

dim_t FLASH_Obj_scalar_col_offset(FLA_Obj obj);

Purpose: Query the scalar column offset of an object view obj. That is, query the column offset
of the view relative to the top-left corner of the underlying hierarchical matrix.

Notes: Using FLASH Obj scalar col offset() on a flat matrix will return the same value as
FLA Obj col offset().

Notes: This routine should only be used by advanced users and developers.

Returns: An unsigned integer value of type dim t.

Arguments:

obj – An FLA Obj.

5.4.8 Managing Views

5.4.8.1 Vertical partitioning

FLA_Error FLASH_Part_create_2x1(FLA_Obj A, FLA_Obj* AT,

FLA_Obj* AB,

dim_t mb, FLA_Side side);

Purpose: Partition a hierarchical matrix A into top and bottom side views where the side indicated
by side has mb rows.

Notes: Unlike with FLA Part 2x1(), the two views created by FLASH Part create 2x1() must
be explicitly freed by a corresponding call to FLASH Part free 2x1().

Imp. Notes: This function performs a deep copy of the matrix hierarchy of A but creates leaf nodes
that simply refer back to the original data in A.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
AT

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a hierarchical FLA Obj view into the top side of A.

AB

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a hierarchical FLA Obj view into the bottom side of A.

mb – The number of rows to extract.
side – The side to which to extract mb rows.

FLA_Error FLASH_Part_free_2x1(FLA_Obj* AT, FLA_Obj* AB);

Purpose: Free the top and bottom side views that were previously created by
FLASH Part create 2x1().

Returns: FLA SUCCESS

Arguments:
AT

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

AB

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

108 5. User-level Application Programming Interfaces

5.4.8.2 Horizontal partitioning

FLA_Error FLASH_Part_create_1x2(FLA_Obj A, FLA_Obj* AL, FLA_Obj* AR,

dim_t nb, FLA_Side side);

Purpose: Partition a hierarchical matrix A into left and right side views where the side indicated
by side has nb columns.

Notes: Unlike with FLA Part 1x2(), the two views created by FLASH Part create 1x2() must
be explicitly freed by a corresponding call to FLASH Part free 1x2().

Imp. Notes: This function performs a deep copy of the matrix hierarchy of A but creates leaf nodes
that simply refer back to the original data in A.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
AL

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a hierarchical FLA Obj view into the left side of A.

AR

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a hierarchical FLA Obj view into the right side of A.

nb – The number of columns to extract.
side – The side to which to extract nb columns.

FLA_Error FLASH_Part_free_1x2(FLA_Obj* AL, FLA_Obj* AR);

Purpose: Free the left and right side views that were previously created by
FLASH Part create 1x2().

Returns: FLA SUCCESS

Arguments:
AL

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

AR

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

5.4. FLASH 109

5.4.8.3 Bidirectional partitioning

FLA_Error FLASH_Part_create_2x2(FLA_Obj A, FLA_Obj* ATL, FLA_Obj* ATR,

FLA_Obj* ABL, FLA_Obj* ABR,

dim_t mb, dim_t nb, FLA_Quadrant quadrant);

Purpose: Partition a hierarchical matrix A into four quadrant views where the quadrant indicated
by quadrant is mb× nb.

Notes: Unlike with FLA Part 2x2(), the four quadrant views created by
FLASH Part create 2x2() must be explicitly freed by a corresponding call to
FLASH Part free 2x2().

Imp. Notes: This function performs a deep copy of the matrix hierarchy of A but creates leaf nodes
that simply refer back to the original data in A.

Returns: FLA SUCCESS

Arguments:

A – An FLA Obj.
ATL...ABR

(on entry) – Pointers to uninitialized FLA Obj structures.
(on exit) – Pointers to hierarchical FLA Obj views into the four quadrants of A.

mb – The number of rows to extract.
nb – The number of columns to extract.
quadrant – The quadrant to which to extract mb rows and nb columns.

FLA_Error FLASH_Part_free_2x2(FLA_Obj* ATL, FLA_Obj* ATR,

FLA_Obj* ABL, FLA_Obj* ABR);

Purpose: Free the quadrant views that were previously created by FLASH Part create 2x2().

Returns: FLA SUCCESS

Arguments:
ATL

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

ABL

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

ATR

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

ABR

(on entry) – A pointer to a valid hierarchical FLA Obj view.
(on exit) – A pointer to an uninitialized FLA Obj.

110 5. User-level Application Programming Interfaces

5.4.9 Utility functions

5.4.9.1 Miscellaneous functions

FLA_Error FLASH_Obj_show(char* header, FLA_Obj H, char* format, char* footer);

Purpose: Display the numerical values contained in the hierarchical object view H. The string
header is output first (followed by a newline), then formatted contents of obj, and
finally the string footer (followed by a newline). The string format should contain a
printf()-style format string that describes how to output each element of the matrix.
Note that format must be set according to the numerical contents of obj. For example,
if the datatype of obj is FLA DOUBLE, the user may choose to use "%11.3e" as the format
string. Similarly, if the object datatype were FLA DOUBLE COMPLEX, the user would want
to use something like "%11.3e + %11.3e" in order to denote the real and imaginary
components.

Notes: Using FLASH Obj show() on a flat matrix object will yield the same output as using
FLA Obj show().

Returns: FLA SUCCESS

Arguments:

header – A pointer to a string to precede the formatted output of obj.
format – A pointer to a printf()-style format string.
obj – A hierarchical FLA Obj.
footer – A pointer to a string to proceed the formatted output of obj.

5.5 SuperMatrix

5.5.1 Overview

SuperMatrix is an extension to the FLAME/C and FLASH APIs that enables task-level parallel execution
via algoriths-by-blocks [15]. The SuperMatrix runtime system itself is dependency-aware, and therefore is a
major step forward when compared to more primitive workqueuing-based solutions [39].

The mechanism works as follows. Subproblems within a FLAME algorithm implementation are replaced,
via macros, with calls to a routine that enqueues all pertinent information about the subproblem onto a
global task queue. This information includes a function pointer to the computational routine that would
normally execute the subproblem and references to the subproblem’s arguments. The algorithm is then run
sequentially, at which time the subproblem instances, or tasks, are enqueued. As tasks are enqueued, a
dependency graph is incrementally constructed, which tracks flow, anti-, and output dependencies between
tasks. After enqueuing is complete, the SuperMatrix runtime system is invoked. Tasks marked as “ready”
are dequeued by independent threads and executed. When a task is complete, the dependency graph is
updated, and unexecuted tasks are marked as ready as soon as all of their dependencies are satisfied. This
process continues until all tasks have been executed.

A computational routine parallelized by SuperMatrix uses the same algorithmic variant implementations
employed by sequential FLAME/C and sequential FLASH routines. For interested developers or other
curious readers, you may find a discussion of the mechanism that makes this reuse of code possible in
Section ??.

The interface to the SuperMatrix mechanism and characteristics of its libflame implementation have
been thoroughly documented in the literature [16, 15]. Please see these texts for futher information regarding
SuperMatrix.

5.5. SuperMatrix 111

5.5.2 API

In this subsection we document all of the libflame interfaces needed to use SuperMatrix in your application.
The developer-level interfaces are documented in Section ??.

FLA_Error FLASH_Queue_enable(void);

Purpose: Enable SuperMatrix. By enabling SuperMatrix, the user enables algorithm-level shared
memory parallelism within FLASH-based computational routines. If SuperMatrix is
already enabled, the function has no effect.

Notes: If SuperMatrix was enabled at configure-time, FLA Init() will call this function, and
thus the user does not need to invoke it unless SuperMatrix was temporarily disabled via
FLASH Queue disable(). If SuperMatrix was disabled at configure-time, the function
aborts with an error message.

Returns: FLA SUCCESS if successful or if SuperMatrix is already enabled; FLA FAILURE if the func-
tion was called from within a parallel region (ie: after FLASH Queue begin() and before
FLASH Queue end()).

FLA_Error FLASH_Queue_disable(void);

Purpose: Disable SuperMatrix. By disabling SuperMatrix, the user disables algorithm-level shared
memory parallelism within FLASH-based computational routines. When SuperMatrix
is disabled, these routines revert back to executing sequentially, though they still expect
hierarchical storage. If SuperMatrix is already disabled, the function has no effect.

Notes: If SuperMatrix was enabled at configure-time, the user should only invoke this function
if he wants to temporariliy disable SuperMatrix in order to run sequential FLASH imple-
mentations. If SuperMatrix was disabled at configure-time, the function unconditionally
returns FLA SUCCESS.

Returns: FLA SUCCESS if successful or if SuperMatrix was disabled at configure-time; FLA FAILURE

if the function was called from within a parallel region (ie: after FLASH Queue begin()

and before FLASH Queue end()).

FLA_Bool FLASH_Queue_get_enabled(void);

Purpose: Query whether SuperMatrix is currently enabled.

Notes: If SuperMatrix was disabled at configure-time, the function unconditionally returns
FALSE.

Returns: TRUE if SuperMatrix was enabled at configure-time and is also currently enabled; FALSE if
SuperMatrix was disabled at configure-time or if SuperMatrix was enabled at configure-
time but is currently disabled.

112 5. User-level Application Programming Interfaces

void FLASH_Queue_begin(void);

Purpose: Mark the beginning of a parallel region. The parallel region continues until the user
invokes FLASH Queue end().

Notes: Any FLASH computational routines found in a parallel region will be parallelized in a
way that overlaps the tasks’ computation in whatever order the scheduler sees fit while
still observing dependencies between tasks.

void FLASH_Queue_end(void);

Purpose: Mark the end of a parallel region. The parallel region begins when the user invokes
FLASH Queue begin().

Notes: Any FLASH computational routines found in a parallel region will be parallelized in a
way that overlaps the tasks’ computation in whatever order the scheduler sees fit while
still observing dependencies between tasks.

void FLASH_Queue_set_num_threads(unsigned int n_threads);

Purpose: Set the number of threads that SuperMatrix will use when executing tasks in parallel.

Notes: This routine does not immediately cause SuperMatrix to spawn any threads.

Arguments:
n threads – An unsigned integer representing the number of threads to be re-

quested upon parallel execution.

unsigned int FLASH_Queue_get_num_threads(void);

Purpose: Query the number of threads that SuperMatrix is currently set to use when executing
tasks in parallel.

Returns: An unsigned integer representing the number of threads that SuperMatrix is currently
set to use in parallel execution.

void FLASH_Queue_set_verbose_output(FLASH_Verbose verbose);

Purpose: Set or disable verboseness in SuperMatrix, particularly with regard to the dependency
graph as it is generated. Three constant values are accepted for verbose:

• FLASH QUEUE VERBOSE NONE. Verbose mode is disabled altogether.

• FLASH QUEUE VERBOSE READABLE. Human-readable dependency information is
printed to standard output as execution progresses.

• FLASH QUEUE VERBOSE GRAPHVIZ. Dependency information is printed to standard
output in the DOT language format, which is readable by the graphviz utility.

Arguments:

verbose – A value that sets or disables SuperMatrix verbosity.

5.5. SuperMatrix 113

FLASH_Verbose FLASH_Queue_get_verbose_output(void);

Purpose: Query the current status of verbosity in SuperMatrix.

Returns: A constant value of type FLASH Verbose.

void FLASH_Queue_set_sorting(FLA_Bool sorting);

Purpose: Enable or disable task sorting in SuperMatrix. When sorting is enabled, SuperMatrix
will sort its queue of ready-and-waiting tasks according to some heuristic.

Arguments:

sorting – A boolean value that either enables (TRUE) or disables (FALSE) Su-
perMatrix task sorting.

FLA_Bool FLASH_Queue_get_sorting(void);

Purpose: Query the current status of task sorting in SuperMatrix.

Returns: A boolean value; TRUE if SuperMatrix is currently set to sort tasks prior to execution,
FALSE otherwise.

void FLASH_Queue_set_data_affinity(FLASH_Data_aff data_aff);

Purpose: Set the style of data affinity for use in SuperMatrix execution. This setting determines
that manner in which blocks are assigned and bound to threads (if at all). Five constant
values are accepted for data aff:

• FLASH QUEUE AFFINITY NONE. Data affinity is disabled altogether, allowing
threads to execute tasks regardless of which blocks they update.

• FLASH QUEUE AFFINITY 2D BLOCK CYCLIC. Blocks are assigned and bound to
threads in a two-dimensional block cyclic manner.

• FLASH QUEUE AFFINITY 1D ROW BLOCK CYCLIC. Blocks are assigned and bound to
threads in a one-dimensional block cyclic manner within rows.

• FLASH QUEUE AFFINITY 1D COLUMN BLOCK CYCLIC. Blocks are assigned and bound
to threads in a one-dimensional block cyclic manner within columns.

• FLASH QUEUE AFFINITY ROUND ROBIN. Blocks are assigned and bound to threads
in a round-robin manner.

Notes: This feature is different but complimentary to CPU affinity implemented by some oper-
ating system schedulers, including the process scheduler present in the Linux kernel as
of version 2.6.25. CPU affinity binds processes (and threads) to individual processors,
or processor cores. Data affinity binds matrix blocks to individual threads. The idea
behind using them together is to improve performance by reducing the need for matrix
blocks to be migrate between CPU caches as the tasks are executed.

Caveats: The data affinity mode associated with FLASH QUEUE AFFINITY ROUND ROBIN has not yet
been implemented.

Arguments:
data aff – A constant value that specifies the kind of data affinity to use during

parallel execution.

114 5. User-level Application Programming Interfaces

FLASH_Data_aff FLASH_Queue_get_data_affinity(void);

Purpose: Query the current status of data affinity in SuperMatrix.

Returns: A constant value of type FLASH Data aff.

FLA_Error FLASH_Queue_enable_gpu(void);

Purpose: Enable run-time support for GPU execution. When enabled, SuperMatrix tasks that are
GPU-supported are executed on GPUs, while all other tasks are run on the CPU.

Returns: FLA SUCCESS if SuperMatrix is enabled and a parallel region has not yet begun;
FLA FAILURE otherwise.

FLA_Error FLASH_Queue_disable_gpu(void);

Purpose: Disable run-time support for GPU execution. When disabled, all SuperMatrix tasks are
run on the CPU.

Returns: FLA SUCCESS if a parallel region has not yet begun; FLA FAILURE otherwise.

FLA_Bool FLASH_Queue_get_enabled_gpu(void);

Purpose: Query whether GPU execution is currently enabled.

Notes: If SuperMatrix is currently disabled, the function returns FALSE regardless of whether
GPU execution was previously enabled.

Returns: TRUE if SuperMatrix and GPU execution are both enabled; FALSE if SuperMatrix is
disabled, or if SuperMatrix is enabled but GPU execution is disabled.

void FLASH_Queue_set_gpu_num_blocks(dim_t n_blocks);

Purpose: Set the number of storage blocks maintained by each GPU.

Notes: If the user encounters a run-time error reporting that an attempt to allocate memory on
the GPU failed, it may be necessary to set n blocks to a lower value.

Arguments:
n blocks – An unsigned integer representing the number of blocks maintained by

each GPU.

dim_t FLASH_Queue_get_gpu_num_blocks(void);

Purpose: Query the number of storage blocks maintained by each GPU.

Returns: An unsigned integer representing the number of blocks maintained by each GPU.

5.6. Front-ends 115

5.5.3 Integration with FLASH front-ends

SuperMatrix is invoked through the same FLASH front-end functions that are documented in Section 5.6.6

In order to enable the parallelized implementations, the following conditions must be met:

• Multithreading must be enabled at configure-time. This is accomplished by running configure with
the --enable-multithreading=openmp or --enable-multithreading=pthreads option, depending
on which multithreading implementation is desired.

• SuperMatrix must be enabled at configure-time. This is accomplished by running configure with the
--enable-supermatrix option.

• SuperMatrix must be enabled at runtime. If SuperMatrix was enabled at configure-time, then it is au-
tomatically enabled at runtime by FLA Init() and therefore the user does not need to take any further
action. However, SuperMatrix may be disabled at runtime manually through FLASH Queue disable(),
which causes all FLASH-based computational routines to revert to executing sequentially. Subse-
quently, the user can make the parallelized implementations available again by simply calling the
FLASH Queue enable() routine.

SuperMatrix implementations may be run in an overlapped manner by enclosing the computational
invocations with FLASH Queue begin() and FLASH Queue end(). Please see Section 4.3 concrete examples
of how to use this and other features of SuperMatrix.

5.6 Front-ends

This section documents the interfaces to the featured computational routines provided by libflame. We
refer to these interfaces as front-ends, because they form the primary set of APIs for use by users at the
application-level. None of these routines are direct wrappers to external implementations.7 All computational
front-ends employ FLAME algorithmic variants in some capacity, either to produce a blocked algorithm or
an algorithm-by-blocks, the latter of which uses hierarchical storage and may be executed either sequentially
or in parallel. For more information on the mechanisms behind hierarchical storage and parallel execution,
please see Sections 5.4 and 5.5, respectively.

5.6.1 BLAS operations

5.6.1.1 Level-1 BLAS

void FLA_Amax(FLA_Obj x, FLA_Obj i);

Purpose: Find the index i of the element of x which has the maximum absolute value, where x
is a general vector and i is a scalar. If the maximum absolute value is shared by more
than one element, then the element whose index is highest is chosen.

Constraints:
• The numerical datatype of x must be floating-point, and must not be FLA CONSTANT.

• The numerical datatype of i must be integer, and must not be FLA CONSTANT.

Imp. Notes: This function is implemented as a wrapper to FLA Amax external().

Arguments:

x – An FLA Obj representing vector x.
i – An FLA Obj representing scalar i.

6If a FLASH front-end does not exist for a particular operation, this means that the corresponding SuperMatrix implemen-
tation also does not yet exist.

7 There are two exceptions to this: FLA Trmmsx() and FLA Trsmsx(). These routines are in fact direct wrappers to external
implemenations, as libflame does not contain native implemenations of the ?trmmsx() and ?trsmsx() operations. These
routines are also convenient for those who do not wish to call the somewhat longer functions named FLA Trmmsx external()

and FLA Trsmsx external().

116 5. User-level Application Programming Interfaces

void FLA_Asum(FLA_Obj x, FLA_Obj norm1);

Purpose: Compute the 1-norm of a vector:

‖x‖1 :=

n−1∑
i=0

|χi|

where ‖x‖1 is a scalar and χi is the ith element of general vector x of length n. Upon
completion, the 1-norm ‖x‖1 is stored to norm1.

Imp. Notes: This function is implemented as a wrapper to FLA Asum external().

Constraints:
• The numerical datatype of x must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of norm1 must be real and must not be FLA CONSTANT.

• The precision of the datatype of norm1 must be equal to that of x.

Arguments:

x – An FLA Obj representing vector x.
norm1 – An FLA Obj representing scalar ‖x‖1.

void FLA_Axpy(FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

void FLASH_Axpy(FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform an axpy operation:

B := B + αA

where α is a scalar, and A and B are general matrices.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and B.

• The dimensions of A and B must be conformal.

Int. Notes: FLA Axpy() expects A and B to be flat matrix objects.

Imp. Notes: FLA Axpy() simply invokes the external BLAS wrapper FLA Axpy external().
FLASH Axpy() uses multiple FLAME/C algorithmic variants to form an algorithm-by-
blocks, which breaks the axpy operation into subproblems expressed in terms of in-
dividual blocks of A and B and then invokes FLA Axpy external() to perform the
computation on these blocks.

Arguments:

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 117

void FLA_Axpyt(FLA_Trans trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

void FLASH_Axpyt(FLA_Trans trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following extended axpy operations:

B := B + αA

B := B + αAT

B := B + αĀ

B := B + αAH

where α is a scalar, and A and B are general matrices. The trans argument allows the
computation to proceed as if A were conjugated and/or transposed.

Notes: If A and B are vectors, FLA Axpyt() will implicitly and automatically perform the
transposition necessary to achieve conformal dimensions regardless of the value of trans.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and B.

• If A and B are vectors, then their lengths must be equal. Otherwise, if trans equals
FLA NO TRANSPOSE or FLA CONJ NO TRANSPOSE, then the dimensions of A and B must
be conformal; otherwise, if trans equals FLA TRANSPOSE or FLA CONJ TRANSPOSE, then
the dimensions of AT and B must be conformal.

Int. Notes: FLA Axpyt() expects A and B to be flat matrix objects.

Imp. Notes: FLA Axpyt() simply invokes the external BLAS wrapper FLA Axpyt external().
FLASH Axpyt() uses multiple FLAME/C algorithmic variants to form an algorithm-by-
blocks, which breaks the extended axpy operation into subproblems expressed in terms
of individual blocks of A and B and then invokes FLA Axpyt external() to perform the
computation on these blocks.

Arguments:
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

118 5. User-level Application Programming Interfaces

void FLA_Axpyrt(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following extended axpy operations:

B := B + αA

B := B + αAT

B := B + αĀ

B := B + αAH

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangle of B is updated by the operation. The trans

argument allows the computation to proceed as if A were conjugated and/or transposed.
Note that the uplo and trans arguments together determine which triangle of A is read
and which triangle of B is updated.

Constraints:
• The numerical datatypes of A and B must be identical, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of X and Y .

• If trans equals FLA NO TRANSPOSE or FLA CONJ NO TRANSPOSE, then the dimensions
of A and B must be conformal; otherwise, if trans equals FLA TRANSPOSE or
FLA CONJ TRANSPOSE, then the dimensions of AT and B must be conformal.

Int. Notes: FLA Axpyrt() expects A and B to be flat matrix objects.

Imp. Notes: This function is implemented as a wrapper to FLA Axpyrt external().

Arguments:
uplo – Indicates whether the lower or upper triangles of A and B are refer-

enced and updated during the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 119

void FLA_Axpys(FLA_Obj alpha0, FLA_Obj alpha1, FLA_Obj A, FLA_Obj beta, FLA_Obj B);

Purpose: Perform the following extended axpy operation:

B := βB + α0α1A

where α0, α1 and β are scalars, and A and B are general matrices.

Notes: If A and B are vectors, FLA Axpys() will implicitly and automatically perform the
transposition necessary to achieve conformal dimensions.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If α0, α1, and β are not of datatype FLA CONSTANT, then they must match the
datatypes of A and B.

Imp. Notes: This function is implemented as a wrapper to FLA Axpys external().

Arguments:

alpha0 – An FLA Obj representing scalar α0.
alpha1 – An FLA Obj representing scalar α1.
A – An FLA Obj representing matrix A.
beta – An FLA Obj representing scalar β.
B – An FLA Obj representing matrix B.

void FLA_Copy(FLA_Obj A, FLA_Obj B);

void FLASH_Copy(FLA_Obj A, FLA_Obj B);

Purpose: Copy the numerical contents of matrix A to matrix B.

Constraints:
• The numerical datatypes of A and B must be identical and must not be FLA CONSTANT.

• The dimensions of A and B must be conformal.

Int. Notes: FLA Copy() expects A and B to be flat matrix objects.

Imp. Notes: FLA Copy() simply invokes the external BLAS wrapper FLA Copy external().
FLASH Copy() uses multiple FLAME/C algorithmic variants to form an algorithm-by-
blocks, which breaks the copy operation into subproblems expressed in terms of in-
dividual blocks of A and B and then invokes FLA Copy external() to perform the
computation on these blocks.

Arguments:

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

120 5. User-level Application Programming Interfaces

void FLA_Copyr(FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

Purpose: Perform an extended copy operation on triangular matrices A and B:

B := A

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangles of A and B are referenced and updated by the
operation.

Constraints:
• The numerical datatypes of A and B must be identical, and must not be FLA CONSTANT.

• The dimensions of A and B must be conformal.

Imp. Notes: This function is implemented as a wrapper to FLA Copyr external().

Arguments:
uplo – Indicates whether the lower or upper triangles of A and B are refer-

enced and updated during the operation.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

void FLA_Copyrt(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Perform an extended copy operation on triangular matrices A and B:

B := A

B := AT

B := Ā

B := AH

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangle of B is updated by the operation. The trans

argument allows the computation to proceed as if A were conjugated and/or transposed.
Note that the uplo and trans arguments together determine which triangle of A is read
and which triangle of B is overwritten.

Constraints:
• The numerical datatypes of A and B must be identical, and must not be FLA CONSTANT.

• The dimensions of A and B must be conformal.

Imp. Notes: This function is implemented as a wrapper to FLA Copyrt external().

Arguments:
uplo – Indicates whether the lower or upper triangles of A and B are refer-

enced and updated during the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 121

void FLA_Copyt(FLA_Trans trans, FLA_Obj A, FLA_Obj B);

void FLASH_Copyt(FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Copy the numerical contents of A to B with one of the following extended copy opera-
tions:

B := A

B := AT

B := Ā

B := AH

where A and B are general matrices. The trans argument allows the computation to
proceed as if A were conjugated and/or transposed.

Notes: If A and B are vectors, FLA Copyt() will implicitly and automatically perform the
transposition necessary to achieve conformal dimensions regardless of the value of trans.

Constraints:
• The numerical datatypes of A and B must be identical, and must not be FLA CONSTANT.

• If A and B are vectors, then their lengths must be equal. Otherwise, if trans equals
FLA NO TRANSPOSE or FLA CONJ NO TRANSPOSE, then the dimensions of A and B must
be conformal; otherwise, if trans equals FLA TRANSPOSE or FLA CONJ TRANSPOSE, then
the dimensions of AT and B must be conformal.

Int. Notes: FLA Copyt() expects A and B to be flat matrix objects.

Imp. Notes: FLA Copyt() simply invokes the external BLAS wrapper FLA Copyt external().
FLASH Copyt() uses multiple FLAME/C algorithmic variants to form an algorithm-by-
blocks, which breaks the extended copy operation into subproblems expressed in terms
of individual blocks of A and B and then invokes FLA Copyt external() to perform the
computation on these blocks.

Arguments:
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

122 5. User-level Application Programming Interfaces

void FLA_Dot(FLA_Obj x, FLA_Obj y, FLA_Obj rho);

Purpose: Perform a dot (inner) product operation between two vectors:

ρ :=

n−1∑
i=0

χiψi

where ρ is a scalar, and χi and ψi are the ith elements of general vectors x and y,
respectively, where both vectors are of length n. Upon completion, the dot product ρ is
stored to rho.

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dot external().

Arguments:

x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
rho – An FLA Obj representing scalar ρ.

void FLA_Dotc(FLA_Conj conj, FLA_Obj x, FLA_Obj y, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations:

ρ :=

n−1∑
i=0

χiψi

ρ :=

n−1∑
i=0

χ̄iψi

where ρ is a scalar, and χi and ψi are the ith elements of general vectors x and y,
respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dotc() behaves exactly as
FLA Dot().

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dotc external().

Arguments:
conj – Indicates whether to conjugate the intermediate element-wise terms of

the dot product.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
rho – An FLA Obj representing scalar ρ.

5.6. Front-ends 123

void FLA_Dots(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj beta, FLA_Obj rho);

Purpose: Perform the following extended dot product operation between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho.

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of x, y, and ρ.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dots external().

Arguments:

alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
beta – An FLA Obj representing scalar β.
rho – An FLA Obj representing scalar ρ.

124 5. User-level Application Programming Interfaces

void FLA_Dotcs(FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj beta, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi

ρ := βρ+ α

n−1∑
i=0

χ̄iψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product
ρ is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dotcs() behaves exactly as
FLA Dots().

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of x, y, and ρ.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dotcs external().

Arguments:

conj – Indicates whether the operation proceeds as if x and y were conjugated.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
beta – An FLA Obj representing scalar β.
rho – An FLA Obj representing scalar ρ.

5.6. Front-ends 125

void FLA_Dot2s(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj beta, FLA_Obj rho);

Purpose: Perform the following extended dot product operation between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi + ᾱ

n−1∑
i=0

χiψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho.

Notes: Though this operation may be reduced to:

ρ := βρ+ (α+ ᾱ)

n−1∑
i=0

χiψi

it is expressed above in unreduced form to allow a more clear contrast to FLA Dot2cs().

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of x, y, and ρ.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dot2s external().

Arguments:

alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
beta – An FLA Obj representing scalar β.
rho – An FLA Obj representing scalar ρ.

126 5. User-level Application Programming Interfaces

void FLA_Dot2cs(FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj beta, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi + ᾱ

n−1∑
i=0

χiψi

ρ := βρ+ α

n−1∑
i=0

χ̄iψi + ᾱ

n−1∑
i=0

ψ̄iχi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product
ρ is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dot2cs() behaves exactly
as FLA Dot2s().

Constraints:
• The numerical datatypes of x, y, and ρ must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of x, y, and ρ.

• The lengths of vectors x and y must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Dot2cs external().

Arguments:

conj – Indicates whether the operation proceeds as if x and y were conjugated.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
beta – An FLA Obj representing scalar β.
rho – An FLA Obj representing scalar ρ.

void FLA_Inv_scal(FLA_Obj alpha, FLA_Obj A);

Purpose: Perform an inverse scaling operation:

A := α−1A

where α is a scalar and A is a general matrix.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

• α may not be equal to zero.

Imp. Notes: This function is implemented as a wrapper to FLA Inv scal external().

Arguments:

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

5.6. Front-ends 127

void FLA_Inv_scalc(FLA_Conj conjalpha, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform one of the following extended inverse scaling operations:

A := α−1A

A := ᾱ−1A

where α is a scalar and A is a general matrix. The conjalpha argument allows the
computation to proceed as if α were conjugated.

Notes: If α is real, the value of conjalpha is ignored and FLA Inv scalc() behaves exactly as
FLA Inv scal().

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

• α may not be equal to zero.

Imp. Notes: This function is implemented as a wrapper to FLA Inv scalc external().

Arguments:

conjalpha – Indicates whether the operation proceeds as if α were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Nrm2(FLA_Obj x, FLA_Obj norm);

Purpose: Compute the 2-norm of a vector:

‖x‖2 :=

(
n−1∑
i=0

|χi|2
) 1

2

where ‖x‖2 is a scalar and χi is the ith element of general vector x of length n. Upon
completion, the 2-norm ‖x‖2 is stored to norm.

Constraints:
• The numerical datatype of x must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of norm must be real and must not be FLA CONSTANT.

• The precision of the datatype of norm must be equal to that of x.

Imp. Notes: This function is implemented as a wrapper to FLA Nrm2 external().

Arguments:

x – An FLA Obj representing vector x.
norm – An FLA Obj representing scalar ‖x‖2.

128 5. User-level Application Programming Interfaces

void FLA_Scal(FLA_Obj alpha, FLA_Obj A);

Purpose: Perform a scaling operation:

A := αA

where α is a scalar and A is a general matrix.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

Imp. Notes: This function is implemented as a wrapper to FLA Scal external().

Arguments:

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Scalc(FLA_Conj conjalpha, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform one of the following extended scaling operations:

A := αA

A := ᾱA

where α is a scalar and A is a general matrix. The conjalpha argument allows the
computation to proceed as if α were conjugated.

Notes: If α is real, the value of conjalpha is ignored and FLA Scalc() behaves exactly as
FLA Scal().

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

Imp. Notes: This function is implemented as a wrapper to FLA Scalc external().

Arguments:

conjalpha – Indicates whether the operation proceeds as if α were conjugated.
conjalpha – Indicates whether the operation proceeds as if α were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

5.6. Front-ends 129

void FLA_Scalr(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform an extended scaling operation on the lower or upper triangle of a matrix:

A := αA

where α is a scalar and A is a general square matrix. The uplo argument indicates
whether the lower or upper triangle of A is referenced and updated by the operation.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatype of A if A is
real and the precision of A if A is complex.

Imp. Notes: This function is implemented as a wrapper to FLA Scalr external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

updated during the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.

void FLA_Swap(FLA_Obj A, FLA_Obj B);

Purpose: Swap the contents of two general matrices A and B.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• The dimensions of A and B must be conformal.

Imp. Notes: This function is implemented as a wrapper to FLA Swap external().

Arguments:

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

void FLA_Swapt(FLA_Trans transab, FLA_Obj A, FLA_Obj B);

Purpose: Swap the contents of two general matrices A and B. If transab is FLA TRANSPOSE or
FLA CONJ TRANSPOSE, the computation proceeds as if only A (or only B) were transposed.
Furthermore, if transab is FLA CONJ NO TRANSPOSE or FLA CONJ TRANSPOSE, both A and
B are conjugated after their contents are swapped.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If transab equals FLA NO TRANSPOSE or FLA CONJ NO TRANSPOSE, then the dimen-
sions of A and B must be conformal; otherwise, if transab equals FLA TRANSPOSE or
FLA CONJ TRANSPOSE, then the dimensions of AT and B must be conformal.

Imp. Notes: This function is implemented as a wrapper to FLA Swapt external().

Arguments:
transab – Indicates whether the operation proceeds as if A and B were conju-

gated and/or transposed.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

130 5. User-level Application Programming Interfaces

5.6.1.2 Level-2 BLAS

void FLA_Gemv(FLA_Trans transa, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

void FLASH_Gemv(FLA_Trans transa, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following general matrix-vector multiplication (gemv) operations:

y := βy + αAx

y := βy + αATx

y := βy + αĀx

y := βy + αAHx

where α and β are scalars, A is a general matrix, and x and y are general vectors.
The trans argument allows the computation to proceed as if A were conjugated and/or
transposed.

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of y and the number of rows in A (or AT or AH) must be equal, and the
number of columns in A (or AT or AH) and the length of x must be equal.

Int. Notes: FLA Gemv() expects A, x, and y to be flat matrix objects.

Imp. Notes: FLA Gemv() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Gemv() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the gemv
operation into subproblems expressed in terms of individual blocks of A and subvectors
of x and y and then invokes FLA Gemv external() to perform the computation on these
blocks and subvectors.

Arguments:
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

5.6. Front-ends 131

void FLA_Gemvc(FLA_Trans transa, FLA_Conj conjx, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended general matrix-vector multiplication (gemv) op-
erations:

y := βy + αAx y := βy + αAx̄

y := βy + αATx y := βy + αAT x̄

y := βy + αĀx y := βy + αĀx̄

y := βy + αAHx y := βy + αAH x̄

where α and β are scalars, A is a general matrix, and x and y are general vectors.
The trans argument allows the computation to proceed as if A were conjugated and/or
transposed. Likewise, the conjx argument allows the computation to proceed as if x
were conjugated.

Notes: The above matrix-vector operations implicitly assume x and y to be column vectors.
However, since transposing a vector does not change the way its elements are accessed,
we may also express the above operations as:

yr := βyr + αxrA
T yr := βyr + αx̄rA

T

yr := βyr + αxrA yr := βyr + αx̄rA

yr := βyr + αxrA
H yr := βyr + αx̄rA

H

yr := βyr + αxrĀ yr := βyr + αx̄rĀ

respectively, where xr and yr are row vectors.
If A, x, and y are real, the value of conjx is ignored and FLA Gemvc() behaves exactly
as FLA Gemv().

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of y and the number of rows in A (or AT or AH) must be equal, and the
number of columns in A (or AT or AH) and the length of x must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Gemvc external().

Arguments:
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

conjx – Indicates whether the operation proceeds as if x were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

132 5. User-level Application Programming Interfaces

void FLA_Ger(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform a general rank-1 update (ger) operation:

A := A+ αxyT

where α is a scalar, A is a general matrix, and x and y are general vectors.

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A, x, and y.

• The length of x and the number of rows in A must be equal, and the length of y and
the number of columns in A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Ger external().

Arguments:

alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
A – An FLA Obj representing matrix A.

void FLA_Gerc(FLA_Conj conjx, FLA_Conj conjy, FLA_Obj alpha,

FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform one of the following extended general rank-1 update (ger) operations:

A := A+ αxyT

A := A+ αxȳT

A := A+ αx̄yT

A := A+ αx̄ȳT

where α is a scalar, A is a general matrix, and x and y are general vectors. The conjx

and conjy arguments allow the computation to proceed as if x and/or y were conjugated.

Notes: If A, x, and y are real, the values of conjx and conjy are ignored and FLA Gerc()

behaves exactly as FLA Ger().

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A, x, and y.

• The length of x and the number of rows in A must be equal, and the length of y and
the number of columns in A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Gerc external().

Arguments:

conjx – Indicates whether the operation proceeds as if x were conjugated.
conjy – Indicates whether the operation proceeds as if y were conjugated.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
A – An FLA Obj representing matrix A.

5.6. Front-ends 133

void FLA_Hemv(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform a Hermitian matrix-vector multiplication (hemv) operation:

y := βy + αAx

where α and β are scalars, A is a Hermitian matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation.

Notes: When invoked with real objects, this function performs the symv operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and must not be
FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Hemv external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

134 5. User-level Application Programming Interfaces

void FLA_Hemvc(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended Hermitian matrix-vector multiplication (hemv)
operations:

y := βy + αAx

y := βy + αĀx

where α and β are scalars, A is a Hermitian matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced
by the operation. The conj argument allows the computation to proceed as if A were
conjugated.

Notes: When invoked with real objects, this function performs the symv operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and must not be
FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Imp. Notes: This function is implemented as a wrapper to FLA Hemvc external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
conj – Indicates whether the operation proceeds as if A were conjugated.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

5.6. Front-ends 135

void FLA_Her(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A);

Purpose: Perform a Hermitian rank-1 update (her) operation:

A := A+ αxxH

where α is a scalar, A is a Hermitian matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Notes: When invoked with real objects, this function performs the syr operation.

Constraints:
• The numerical datatypes of A and x must be identical and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and x.

• The length of x and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Her external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

updated during the operation.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
A – An FLA Obj representing matrix A.

void FLA_Herc(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj A);

Purpose: Perform one of the following extended Hermitian rank-1 update (her) operations:

A := A+ αxxH

A := A+ αx̄xT

where α is a scalar, A is a Hermitian matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation. The conj argument allows the computation of the conjugated rank-1
product x̄xT .

Notes: When invoked with real objects, this function performs the syr operation.

Constraints:
• The numerical datatypes of A and x must be identical and must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and x.

• The length of x and the order of A must be equal.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Imp. Notes: This function is implemented as a wrapper to FLA Herc external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

updated during the operation.
trans – Indicates whether the operation proceeds as if the rank-1 prodcut is

conjugated.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
A – An FLA Obj representing matrix A.

136 5. User-level Application Programming Interfaces

void FLA_Her2(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform a Hermitian rank-2 update (her2) operation:

A := A+ αxyH + ᾱyxH

where α is a scalar, A is a Hermitian matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Notes: When invoked with real objects, this function performs the syr2 operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and must not be
FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Her2 external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
A – An FLA Obj representing matrix A.

5.6. Front-ends 137

void FLA_Her2c(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj A);

Purpose: Perform one of the following extended Hermitian rank-2 update (her2) operations:

A := A+ αxyH + ᾱyxH

A := A+ αx̄yT + ᾱȳxT

where α is a scalar, A is a Hermitian matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation. The trans argument allows the computation of the conjugated rank-2
products x̄yT and ȳxT .

Notes: When invoked with real objects, this function performs the syr2 operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and must not be
FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Imp. Notes: This function is implemented as a wrapper to FLA Her2c external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if the rank-2 prodcuts are

conjugated.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
A – An FLA Obj representing matrix A.

138 5. User-level Application Programming Interfaces

void FLA_Symv(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform a symmetric matrix-vector multiplication (symv) operation:

y := βy + αAx

where α and β are scalars, A is a symmetric matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Symv external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

void FLA_Syr(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A);

Purpose: Perform a symmetric rank-1 update (syr) operation:

A := A+ αxxT

where α is a scalar, A is a symmetric matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Constraints:
• The numerical datatypes of A and x must be identical and floating-point, and must

not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and x.

• The length of x and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Syr external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
A – An FLA Obj representing matrix A.

5.6. Front-ends 139

void FLA_Syr2(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform a symmetric rank-2 update (syr2) operation:

A := A+ αxyT + αyxT

where α is a scalar, A is a symmetric matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

Imp. Notes: This function is implemented as a wrapper to FLA Syr2 external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
x – An FLA Obj representing vector x.
y – An FLA Obj representing vector y.
A – An FLA Obj representing matrix A.

void FLA_Trmv(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj A, FLA_Obj x);

Purpose: Perform one of the following triangular matrix-vector multiplication (trmv) operations:

x := Ax

x := ATx

x := Āx

x := AHx

where A is a triangular matrix and x is a general vector. The uplo argument indicates
whether the lower or upper triangle of A is referenced by the operation. The transa

argument allows the computation to proceed as if A were conjugated and/or transposed.
The diag argument indicates whether the diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A and x must be identical and floating-point, and must

not be FLA CONSTANT.

• The length of x and the order of A must be equal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function is implemented as a wrapper to FLA Trmv external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.

140 5. User-level Application Programming Interfaces

void FLA_Trmvsx(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended triangular matrix-vector multiplication (trmv)
operations:

y := βy + αAx

y := βy + αATx

y := βy + αĀx

y := βy + αAHx

where α and β are scalars, A is a triangular matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation. The transa argument allows the computation to proceed as if A were
conjugated and/or transposed. The diag argument indicates whether the diagonal of A
is unit or non-unit.

Constraints:
• The numerical datatypes of A, x, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, x, and y.

• The length of x, the length of y, and the order of A must be equal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function is implemented as a wrapper to FLA Trmvsx external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
x – An FLA Obj representing vector x.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

5.6. Front-ends 141

void FLA_Trsv(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj A, FLA_Obj b);

void FLASH_Trsv(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj A, FLA_Obj b);

Purpose: Perform one of the following triangular solve (trsv) operations:

Ax = b

ATx = b

Āx = b

AHx = b

which, respectively, are solved by overwriting b with the contents of the solution vector
x as follows:

b := A−1b

b := A−T b

b := Ā−1b

b := A−Hb

where A is a triangular matrix and x and b are general vectors. The uplo argument
indicates whether the lower or upper triangle of A is referenced by the operation. The
transa argument allows the computation to proceed as if A were conjugated and/or
transposed. The diag argument indicates whether the diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A and b must be identical and floating-point, and must

not be FLA CONSTANT.

• The length of b and the order of A must be equal.

• diag may not be FLA ZERO DIAG.

Int. Notes: FLA Trsv() expects A and b to be flat matrix objects.

Imp. Notes: FLA Trsv() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Trsv() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the trsv
operation into subproblems expressed in terms of individual blocks of A and subvectors
of b and then invokes external BLAS to perform the computation on these blocks and
subvectors.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
A – An FLA Obj representing matrix A.
b – An FLA Obj representing vector b.

142 5. User-level Application Programming Interfaces

void FLA_Trsvsx(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj alpha,

FLA_Obj A, FLA_Obj b, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended triangular solve (trsv) operations:

y := βy + αA−1b

y := βy + αA−T b

y := βy + αĀ−1b

y := βy + αA−Hb

where α and β are scalars, A is a triangular matrix, and b and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation. The transa argument allows the computation to proceed as if A were
conjugated and/or transposed. The diag argument indicates whether the diagonal of A
is unit or non-unit.

Constraints:
• The numerical datatypes of A, b, and y must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, b, and y.

• The length of b, the length of y, and the order of A must be equal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function is implemented as a wrapper to FLA Trsvsx external().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
b – An FLA Obj representing vector b.
beta – An FLA Obj representing scalar β.
y – An FLA Obj representing vector y.

5.6. Front-ends 143

5.6.1.3 Level-3 BLAS

void FLA_Gemm(FLA_Trans transa, FLA_Trans transb, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

void FLASH_Gemm(FLA_Trans transa, FLA_Trans transb, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following general matrix-matrix multiplication (gemm) operations:

C := βC + αAB C := βC + αĀB

C := βC + αABT C := βC + αĀBT

C := βC + αAB̄ C := βC + αĀB̄

C := βC + αABH C := βC + αĀBH

C := βC + αATB C := βC + αAHB

C := βC + αATBT C := βC + αAHBT

C := βC + αAT B̄ C := βC + αAHB̄

C := βC + αATBH C := βC + αAHBH

where α and β are scalars and A, B, and C are general matrices. The transa and
transb arguments allows the computation to proceed as if A and/or B were conjugated
and/or transposed.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• The number of rows in C and the number of rows in A (or AT) must be equal; the
number of columns in C and the number of columns of B (or BT) must be equal; and
the number of columns in A (or AT) and the number of rows in B (or BT) must be
equal.

Int. Notes: FLA Gemm() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Gemm() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Gemm() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the gemm
operation into subproblems expressed in terms of individual blocks of A, B, and C and
then invokes FLA Gemm external() to perform the computation on these blocks.

Arguments:
transa – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

transb – Indicates whether the operation proceeds as if B were conjugated
and/or transposed.

alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

144 5. User-level Application Programming Interfaces

void FLA_Hemm(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

void FLASH_Hemm(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian matrix-matrix multiplication (hemm) operations:

C := βC + αAB

C := βC + αBA

where α and β are scalars, A is a Hermitian matrix, and B and C are general matrices.
The side argument indicates whether matrix A is multiplied on the left or the right
side of B. The uplo argument indicates whether the lower or upper triangle of A is
referenced by the operation.

Notes: When invoked with real objects, this function performs the symm operation.

Constraints:
• The numerical datatypes of A, B, and C must be identical and must not be
FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• The dimensions of C and B must be conformal.

• If side equals FLA LEFT, then the number of rows in C and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in C and the
order of A must be equal.

Int. Notes: FLA Hemm() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Hemm() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Hemm() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the hemm
operation into subproblems expressed in terms of individual blocks of A, B, and C and
then invokes external BLAS to perform the computation on these blocks.

Arguments:

side – Indicates whether A is multipled on the left or right side of B.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

5.6. Front-ends 145

void FLA_Herk(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

void FLASH_Herk(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian rank-k update (herk) operations:

C := βC + αAAH

C := βC + αAHA

where α and β are scalars, C is a Hermitian matrix, and A is a general matrix. The uplo
argument indicates whether the lower or upper triangle of C is referenced and updated
by the operation. The trans argument allows the computation to proceed as if A were
conjugate-transposed, which results in the alternate rank-k product AHA.

Notes: When invoked with real objects, this function performs the syrk operation.

Constraints:
• The numerical datatypes of A and C must be identical and must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must be real and match the
precision of the datatypes of A and C.

• If trans equals FLA NO TRANSPOSE, then the order of matrix C and the the number
of rows in A must be equal; otherwise, if trans equals FLA CONJ TRANSPOSE, then the
order of matrix C and the number of columns in A must be equal.

Int. Notes: FLA Herk() expects A and C to be flat matrix objects.

Imp. Notes: FLA Herk() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Herk() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the herk
operation into subproblems expressed in terms of individual blocks of A and C and then
invokes external BLAS to perform the computation on these blocks.

Arguments:
uplo – Indicates whether the lower or upper triangle of C is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A were conjugate-

transposed.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

146 5. User-level Application Programming Interfaces

void FLA_Her2k(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

void FLASH_Her2k(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian rank-2k update (her2k) operations:

C := βC + αABH + ᾱBAH

C := βC + αAHB + ᾱBHA

where α and β are scalars, C is a Hermitian matrix, and A and B are general matrices.
The uplo argument indicates whether the lower or upper triangle of C is referenced and
updated by the operation. The trans argument allows the computation to proceed as
if A and B were conjugate-transposed, which results in the alternate rank-2k products
AHB and BHA.

Notes: When invoked with real objects, this function performs the syr2k operation.

Constraints:
• The numerical datatypes of A, B, and C must be identical and must not be
FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then their datatypes must be real and
complex, respectively, and match the precision of the datatypes of A, B, and C.

• The dimensions of A and B must be conformal.

• If trans equals FLA NO TRANSPOSE, then the order of matrix C and the the number
of rows in A and B must be equal; otherwise, if trans equals FLA CONJ TRANSPOSE,
then the order of matrix C and the number of columns in A and B must be equal.

Int. Notes: FLA Her2k() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Her2k() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Her2k() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the her2k
operation into subproblems expressed in terms of individual blocks of A, B, and C and
then invokes external BLAS to perform the computation on these blocks.

Arguments:
uplo – Indicates whether the lower or upper triangle of C is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A andB were conjugate-

transposed.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

5.6. Front-ends 147

void FLA_Symm(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

void FLASH_Symm(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric matrix-matrix multiplication (symm) operations:

C := βC + αAB

C := βC + αBA

where α and β are scalars, A is a symmetric matrix, and B and C are general matrices.
The side argument indicates whether the symmetric matrix A is multiplied on the left
or the right side of B. The uplo argument indicates whether the lower or upper triangle
of A is referenced by the operation.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• The dimensions of C and B must be conformal.

• If side equals FLA LEFT, then the number of rows in C and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in C and the
order of A must be equal.

Int. Notes: FLA Symm() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Symm() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Symm() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the symm
operation into subproblems expressed in terms of individual blocks of A, B, and C and
then invokes external BLAS to perform the computation on these blocks.

Arguments:

side – Indicates whether A is multipled on the left or right side of B.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

148 5. User-level Application Programming Interfaces

void FLA_Syrk(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

void FLASH_Syrk(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric rank-k update (syrk) operations:

C := βC + αAAT

C := βC + αATA

where α and β are scalars, C is a symmetric matrix, and A is a general matrix. The uplo
argument indicates whether the lower or upper triangle of C is referenced and updated
by the operation. The trans argument allows the computation to proceed as if A were
transposed, which results in the alternate rank-k product ATA.

Constraints:
• The numerical datatypes of A and C must be identical and floating-point, and must

not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A and C.

• If trans equals FLA NO TRANSPOSE, then the order of matrix C and the the number of
rows in A must be equal; otherwise, if trans equals FLA TRANSPOSE, then the order
of matrix C and the number of columns in A must be equal.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Int. Notes: FLA Syrk() expects A and C to be flat matrix objects.

Imp. Notes: FLA Syrk() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Syrk() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the syrk
operation into subproblems expressed in terms of individual blocks of A and C and then
invokes external BLAS to perform the computation on these blocks.

Arguments:
uplo – Indicates whether the lower or upper triangle of C is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A is transposed.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

5.6. Front-ends 149

void FLA_Syr2k(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

void FLASH_Syr2k(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric rank-2k update (syr2k) operations:

C := βC + αABT + αBAT

C := βC + αATB + αBTA

where α and β are scalars, C is a symmetric matrix, and A and B are general matrices.
The uplo argument indicates whether the lower or upper triangle of C is referenced and
updated by the operation. The trans argument allows the computation to proceed as
if A and B were transposed, which results in the alternate rank-2k products ATB and
BTA.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• The dimensions of A and B must be conformal.

• If trans equals FLA NO TRANSPOSE, then the order of matrix C and the the number
of rows in A and B must be equal; otherwise, if trans equals FLA TRANSPOSE, then
the order of matrix C and the number of columns in A and B must be equal.

• trans may not be FLA CONJ TRANSPOSE or FLA CONJ NO TRANSPOSE.

Int. Notes: FLA Syr2k() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Syr2k() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Syr2k() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the syr2k
operation into subproblems expressed in terms of individual blocks of A, B, and C and
then invokes external BLAS to perform the computation on these blocks.

Arguments:
uplo – Indicates whether the lower or upper triangle of C is referenced during

the operation.
transa – Indicates whether the operation proceeds as if A and B were trans-

posed.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

150 5. User-level Application Programming Interfaces

void FLA_Trmm(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

void FLASH_Trmm(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following triangular matrix-matrix multiplication (trmm) operations:

B := αAB B := αBA

B := αATB B := αBAT

B := αĀB B := αBĀ

B := αAHB B := αBAH

where α is a scalar, A is a triangular matrix, and B is a general matrix. The side

argument indicates whether the triangular matrix A is multiplied on the left or the right
side of B. The uplo argument indicates whether the lower or upper triangle of A is
referenced by the operation. The trans argument may be used to perform the check
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and B.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• diag may not be FLA ZERO DIAG.

Int. Notes: FLA Trmm() expects A and B to be flat matrix objects.

Imp. Notes: FLA Trmm() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Trmm() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the trmm
operation into subproblems expressed in terms of individual blocks of A and B and then
invokes external BLAS to perform the computation on these blocks.

Arguments:

side – Indicates whether A is multipled on the left or right side of B.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 151

void FLA_Trmmsx(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,

FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following extended triangular matrix-matrix multiplication opera-
tions:

C := βC + αAB C := βC + αBA

C := βC + αATB C := βC + αBAT

C := βC + αĀB C := βC + αBĀ

C := βC + αAHB C := βC + αBAH

where α and β are scalars, A is a triangular matrix, and B and C are general matrices.
The side argument indicates whether the triangular matrix A is multiplied on the left or
the right side of B. The uplo argument indicates whether the lower or upper triangle of
A is referenced by the operation. The trans argument allows the computation to proceed
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• The dimensions of B and C must be conformal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trmm()

along with the level-1 BLAS routines ?copy(), *scal(), and ?axpy().

Arguments:

side – Indicates whether A is multipled on the left or right side of B.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

152 5. User-level Application Programming Interfaces

void FLA_Trsm(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans, FLA_Diag diag,

FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

void FLASH_Trsm(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans, FLA_Diag diag,

FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following triangular solve with multiple right-hand sides (trsm)
operations:

AX = αB XA = αB

ATX = αB XAT = αB

ĀX = αB XĀ = αB

AHX = αB XAH = αB

and overwrite B with the contents of the solution matrix X as follows:

B := αA−1B B := αBA−1

B := αA−TB B := αBA−T

B := αĀ−1B B := αBĀ−1

B := αA−HB B := αBA−H

where α is a scalar, A is a triangular matrix, and X and B are general matrices. The
side argument indicates whether the triangular matrix A is multiplied on the left or the
right side of X. The uplo argument indicates whether the lower or upper triangle of A
is referenced by the operation. The trans argument allows the computation to proceed
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• If α is not of datatype FLA CONSTANT, then it must match the datatypes of A and B.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• diag may not be FLA ZERO DIAG.

Int. Notes: FLA Trmm() expects A and B to be flat matrix objects.

Imp. Notes: FLA Trsm() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS. FLASH Trsm() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the trsm
operation into subproblems expressed in terms of individual blocks of A and B and then
invokes external BLAS to perform the computation on these blocks.

Arguments:

side – Indicates whether A is multipled on the left or right side of X.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 153

void FLA_Trsmsx(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,

FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following extended triangular solve with multiple right-hand sides
(trsm) operations:

AX = αB XA = αB

ATX = αB XAT = αB

ĀX = αB XĀ = αB

AHX = αB XAH = αB

and update C with the contents of the solution matrix X as follows:

C := βC + αA−1B C := βC + αBA−1

C := βC + αA−TB C := βC + αBA−T

C := βC + αĀ−1B C := βC + αBĀ−1

C := βC + αA−HB C := βC + αBA−H

where α and β are scalars, A is a triangular matrix, and X, B, and C are general
matrices. The side argument indicates whether the triangular matrix A is multiplied
on the left or the right side of X. The uplo argument indicates whether the lower or
upper triangle of A is referenced by the operation. The trans argument allows the
computation to proceed as if A were conjugated and/or transposed. The diag argument
indicates whether the diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• The dimensions of B and C must be conformal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trsm()

along with the level-1 BLAS routines ?copy(), *scal(), and ?axpy().

Arguments:

side – Indicates whether A is multipled on the left or right side of X.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

154 5. User-level Application Programming Interfaces

5.6.2 LAPACK operations

FLA_Error FLA_Chol(FLA_Uplo uplo, FLA_Obj A);

FLA_Error FLASH_Chol(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform one of the following Cholesky factorizations (chol):

A → LLT

A → UTU

A → LLH

A → UHU

where A is positive definite. If A is real, then it is assumed to be symmetric; otherwise,
if A is complex, then it is assumed to be Hermitian. The operation references and then
overwrites the lower or upper triangle of A with the Cholesky factor L or U , depending
on the value of uplo.

Returns: FLA SUCCESS if the operation is successful; otherwise, if A is not positive definite, a
signed integer corresponding to the row/column index at which the algorithm detected
a negative or non-real entry along the diagonal. The row/column index is zero-based,
and thus its possible range extends inclusively from 0 to n− 1.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Int. Notes: FLA Chol() expects A to be a flat matrix object.

Imp. Notes: FLA Chol() invokes one or more FLAME/C variants to induce a blocked algorithm with
subproblems performed by calling wrappers to external BLAS routines. FLASH Chol()

uses multiple FLAME/C algorithmic variants to form an algorithm-by-blocks, which
breaks the chol operation into subproblems expressed in terms of individual blocks of A
and then invokes external BLAS routines to perform the computation on these blocks. By
default, the unblocked Cholesky subproblems are computed by internal implementations.
However, if the external-lapack-for-subproblems option is enabled at configure-time,
these subproblems are computed by external unblocked LAPACK routines.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten during the operation.
A – An FLA Obj representing matrix A.

5.6. Front-ends 155

FLA_Error FLA_Chol_solve(FLA_Uplo uplo, FLA_Obj A, FLA_Obj B, FLA_Obj X);

FLA_Error FLASH_Chol_solve(FLA_Uplo uplo, FLA_Obj A, FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more symmetric (or Hermitian) positive definite linear systems,

AX = B

by applying the results of a Cholesky factorization stored in A to a set of right-hand sides
stored in B. Thus, the solution vectors overwrite X according to one of the following
operations:

X := L−TL−1B

X := U−1U−TB

where L and U are the lower and upper triangles of A. The operation references only
one triangle of A, depending on the value of uplo. This value for uplo should be the
same as the uplo argument passed to FLA Chol() or FLASH Chol().

Notes: It is assumed that the prior Cholesky factorization which wrote to A completed success-
fully.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, B, and X must be identical and floating-point, and

must not be FLA CONSTANT.

• A must be square.

• The number of rows in B and X must be equal to the order of A, and the number of
columns in B and X must be equal.

Int. Notes: FLA Chol solve() expects A, B, and X to be flat matrix objects.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
X – An FLA Obj representing matrix X.

156 5. User-level Application Programming Interfaces

FLA_Error FLA_LU_nopiv(FLA_Obj A);

FLA_Error FLASH_LU_nopiv(FLA_Obj A);

Purpose: Perform an LU factorization without pivoting (lunopiv):

A → LU

where A is a general matrix, L is lower triangular (or lower trapezoidal if m > n) with a
unit diagonal, and U is upper triangular (or upper trapezoidal if m < n). The operation
overwrites the strictly lower triangular portion of A with L and the upper triangular
portion of A with U . The diagonal elements of L are not stored.

Notes: The algorithms used by FLA LU nopiv() and FLA LU nopiv() do not perform pivoting
and are therefore numerically unstable. Almost all applications should use FLA LU piv()

or FLASH LU piv() instead.

Returns: FLA SUCCESS if A is nonsingular; otherwise, a signed integer corresponding to the
row/column index of the first zero diagonal entry in U . The row/column index is zero-
based, and thus its possible range extends inclusively from 0 to min(m,n)− 1.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Int. Notes: FLA LU nopiv() expects A to be a flat matrix object.

Imp. Notes: FLA LU nopiv() invokes one or more FLAME/C variants to induce a blocked al-
gorithm with subproblems performed by calling wrappers to external BLAS rou-
tines. FLASH LU nopiv() uses multiple FLAME/C algorithmic variants to form an
algorithm-by-blocks, which breaks the lunopiv operation into subproblems expressed
in terms of individual blocks of A and then invokes external BLAS routines to
perform the computation on these blocks. By default, the unblocked LU factor-
ization subproblems are computed by internal implementations. However, if the
external-lapack-for-subproblems option is enabled at configure-time, these subprob-
lems are computed by external unblocked LAPACK routines.

Arguments:

A – An FLA Obj representing matrix A.

5.6. Front-ends 157

FLA_Error FLA_LU_piv(FLA_Obj A, FLA_Obj p);

FLA_Error FLASH_LU_piv(FLA_Obj A, FLA_Obj p);

Purpose: Perform an LU factorization with partial row pivoting (lupiv):

A → PLU

where A is a general matrix, L is lower triangular (or lower trapezoidal if m > n) with
a unit diagonal, U is upper triangular (or upper trapezoidal if m < n), and P is a
permutation matrix, which is encoded into the pivot vector p. The operation overwrites
the strictly lower triangular portion of A with L and the upper triangular portion of A
with U . The diagonal elements of L are not stored.

Notes: FLA LU piv() and FLASH LU piv() fill the pivot vector p differently than the LAPACK
routines ?getrf() and ?getf2(). The latter routines fill the vector to indicate that row i
of matrix A was permuted with row pi. By contrast, the libflame routines fill the vector
to indicate that row i of matrix A was permuted with row pi+i. In other words, an index
value stored within the libflame pivot vector indicates a row swap relative to the current
index, while the corresponding LAPACK pivot vector contains absolute row indices (ie:
relative to the first row). A secondary difference is that the LAPACK routines store index
values ranging from 1 to min(m,n) while the corresponding libflame routines store
indices ranging from 0 to min(m,n)− 1. The user may convert back and forth between
libflame and LAPACK-style pivot indices using the routine FLA Shift pivots to().
(However, this routine only works with flat pivot vectors, and thus a hierarchically-stored
pivot vector must first be flattened.)

Returns: FLA SUCCESS if A is nonsingular; otherwise, a signed integer corresponding to the
row/column index of the first zero diagonal entry in U . The row/column index is zero-
based, and thus its possible range extends inclusively from 0 to min(m,n)− 1.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

• The length of p must be min(m,n).

Int. Notes: FLA LU piv() expects A to be a flat matrix object.

Imp. Notes: FLA LU piv() invokes one or more FLAME/C variants to induce a blocked algo-
rithm with subproblems performed by calling wrappers to external BLAS routines.
FLASH LU piv() uses multiple FLAME/C algorithmic variants to form an algorithm-
by-blocks, which breaks the lupiv operation into subproblems expressed in terms of
individual blocks (or panels of blocks) of A and then invokes external BLAS rou-
tines to perform the computation on these blocks. By default, the unblocked LU
factorization subproblems are computed by internal implementations. However, if the
external-lapack-for-subproblems option is enabled at configure-time, these subprob-
lems are computed by external unblocked LAPACK routines.

Arguments:

A – An FLA Obj representing matrix A.
p – An FLA Obj representing vector p.

158 5. User-level Application Programming Interfaces

FLA_Error FLA_LU_piv_solve(FLA_Obj A, FLA_Obj p, FLA_Obj B, FLA_Obj X);

FLA_Error FLASH_LU_piv_solve(FLA_Obj A, FLA_Obj p, FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of an LU factorization (with partial pivoting) stored in A and p
to a set of right-hand sides stored in B. Thus, the solution vectors overwrite X according
to the following operation:

X := U−1L−1PB

where L is the strictly lower triangle (with unit diagonal) of A, U is the upper triangle
of A, and P represents the perumatation matrix which applies the row interchanges
encoded in the pivot vector p.

Notes: It is assumed that the prior LU factorization which wrote to A completed successfully.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, B, and X must be identical and floating-point, and

must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

• The length of p must be min(m,n) where A is m× n.

• The number of rows in B and X must be equal to the order of A, and the number of
columns in B and X must be equal.

Int. Notes: FLA LU piv solve() expects A, p, B, and X to be flat matrix objects.

Arguments:

A – An FLA Obj representing matrix A.
p – An FLA Obj representing vector p.
B – An FLA Obj representing matrix B.
X – An FLA Obj representing matrix X.

5.6. Front-ends 159

void FLA_Apply_pivots(FLA_Side side, FLA_Trans trans, FLA_Obj p, FLA_Obj A);

Purpose: Apply a permutation matrix P to a matrix A (appiv).

A := PA

A := PTA

A := AP

A := APT

where A is a general matrix and P is a permutation matrix corresponding to the pivot
vector p.

Notes: The pivot vector p must contain pivot values that conform to libflame pivot index-
ing. If the pivot vector was filled using an LAPACK routine, it must first be con-
verted to libflame pivot indexing with FLA Shift pivots to() before it may be used
with FLA Apply pivots unb external(). Please see the description for FLA LU piv()

in Section 5.6.2 for details on the differences between LAPACK-style pivot vectors and
libflame pivot vectors.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

Int. Notes: FLA Apply pivots() expects A to be a flat matrix object.

Imp. Notes: By default, the appiv operation is performed by an internal implementation. However,
if the external-lapack-for-subproblems option is enabled at configure-time, the op-
eration is performed by an external unblocked LAPACK routine.

Caveats: This function is currently only implemented for applying P from the left (ie: side equal
to FLA LEFT and trans equal to FLA NO TRANSPOSE).

Arguments:
side – Indicates whether the operation proceeds as if the permutation matrix

P is applied from the left or the right.
trans – Indicates whether the operation proceeds as if the permutation matrix

P were transposed.
p – An FLA Obj representing vector p.
A – An FLA Obj representing matrix A.

160 5. User-level Application Programming Interfaces

FLA_Error FLASH_LU_incpiv(FLA_Obj A, FLA_Obj p, FLA_Obj L_inter);

Purpose: Perform an LU factorization with incremental pivoting (luincpiv). The operation is
similar to that of LU with partial row pivoting, except that the algorithm is SuperMatrix-
aware. As a consequence, the arguments must be hierarchical objects.

Notes: It is highly recommended that the user create and initialize a flat object containing
the matrix to be factorized and then call FLASH LU incpiv create hier matrices() to
create hierarchical matrices A, p, and Linter from the original flat matrix.

Returns: FLA SUCCESS if the operation is successful; otherwise, if A is singular, a signed integer
corresponding to the row/column index at which the algorithm detected a zero entry
along the diagonal. The row/column index is zero-based, and thus its possible range
extends inclusively from 0 to min(m,n)− 1.

Constraints:
• The numerical datatypes of A and Linter must be identical and floating-point, and

must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

• A must be square.

Int. Notes: In addition to the input matrix A and pivot vector p, the function requires an addi-
tional object Linter, which stores interim matrices that are used in a subsequent forward
substitution.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:

A – A hierarchical FLA Obj representing matrix A.
p – A hierarchical FLA Obj representing vector p.
L inter – A hierarchical FLA Obj representing matrix Linter.

5.6. Front-ends 161

FLA_Error FLASH_LU_incpiv_solve(FLA_Obj A, FLA_Obj p, FLA_Obj L_inter,

FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of an LU factorization with incremental pivoting stored in A, p,
and Linter to a set of right-hand sides stored in B. Thus, the solution vectors overwrite
X according to the following operation:

X := U−1L−1PB

where L is the strictly lower triangle (with unit diagonal) of A, U is the upper triangle
of A, and P represents the perumatation matrix which applies the row interchanges
encoded in the pivot vector p.

Notes: Note that FLASH LU incpiv solve() may only be used in conjunction with matrices
that have been factorized via FLASH LU incpiv(). The output from FLA LU piv() is not
compatible with this function.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, Linter, B, and X must be identical and floating-point,

and must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

• A must be square.

• The number of rows in B and X must be equal to the number of columns in A, and
the number of columns in B and X must be equal.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:

A – A hierarchical FLA Obj representing matrix A.
p – A hierarchical FLA Obj representing vector p.
L inter – A hierarchical FLA Obj representing matrix Linter.
B – A hierarchical FLA Obj representing matrix B.
X – A hierarchical FLA Obj representing matrix X.

162 5. User-level Application Programming Interfaces

void FLASH_FS_incpiv(FLA_Obj A, FLA_Obj p, FLA_Obj L_inter, FLA_Obj b);

Purpose: Perform a forward substitution with the unit lower triangular L factor (residing in the
lower triangle of hierarchical matrix A) and a right-hand side vector b, overwriting b with
an intermediate vector y.

y := L−1b

The matrix p contains the incremental pivot vectors that were used during the LU
factorization with incremental pivoting performed via FLASH LU incpiv(). The matrix
Linter contains intermediate lower triangular factors computed during the factorization,
which are reused in the forward substitution. Note that p and Linter are hierarchical,
and provided by FLASH LU incpiv().

Constraints:
• The numerical datatypes of A, Linter, and b must be identical and floating-point, and

must not be FLA CONSTANT.

• The numerical datatype of p must be FLA INT.

• A must be square.

Imp. Notes: FLASH FS incpiv() uses multiple FLAME/C algorithmic variants to form an algorithm-
by-blocks, which breaks the operation into subproblems expressed in terms of individual
blocks of A, p, Linter, and b and then invokes external BLAS routines to perform the
computation on these blocks.

Caveats: FLASH FS incpiv() currently only works for hierarchical matrices of depth 1 where A
refers to a single storage block.

Arguments:

A – A hierarchical FLA Obj representing matrix A.
p – A hierarchical FLA Obj representing matrix p.
L inter – A hierarchical FLA Obj representing matrix Linter.
b – A hierarchical FLA Obj representing vector b.

5.6. Front-ends 163

void FLA_QR_UT(FLA_Obj A, FLA_Obj T);

void FLASH_QR_UT(FLA_Obj A, FLA_Obj T);

Purpose: Perform a QR factorization via the UT transform (qrut):

A → QR

where Q is an orthogonal matrix (or, a unitary matrix if A is complex) and R is an
upper triangular matrix. The resulting Householder vectors associated with Q are stored
column-wise below the diagonal of A and should only be used with other UT transform
operations. Upon completion, matrix T contains the triangular factors of the block
Householder transformations that were used in the factorization algorithm.

Notes: The matrix factor Q determined by FLA QR UT() and FLASH QR UT() is equal to
H0H1 · · ·Hk−1, where Hi is the Householder transformation which annihilates the sub-
diagonal entries in the ith column of the original matrix A.

Constraints:
• The numerical datatypes of A and T must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to the width of A.

Int. Notes: FLA QR UT() expects A and T to be flat matrix objects.

Imp. Notes: FLA QR UT() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS routines. The unblocked qrut
subproblems are computed by internal implementations. FLASH QR UT() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the qrut
operation into subproblems expressed in terms of individual blocks (or panels of blocks) of
A and then invokes external BLAS routines to perform the computation on these blocks.
The unblocked qrut subproblems are computed by internal implementations. (External
LAPACK routines are not used, even when external-lapack-for-subproblems option
is enabled.)

Imp. Notes: For FLA QR UT() , the algorithmic blocksize is determined by the length of T . When in
doubt, create T via FLA QR UT create T().

Imp. Notes: For FLASH QR UT() , the algorithmic blocksize b, which corresponds to the scalar length
a single block of T, must be equal to the storage blocksize used in A and T . When in
doubt, create T via FLASH QR UT create hier matrices().

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .

164 5. User-level Application Programming Interfaces

void FLA_QR_UT_solve(FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X);

void FLASH_QR_UT_solve(FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of a QR factorization via the UT transform stored in A and T to
a set of right-hand sides stored in B. Thus, the solution vectors overwrite X according
to the following operation:

X := R−1QHB

where R is an upper triangular matrix, stored in A, and Q is an orthogonal (or unitary)
matrix formed from the upper triangular Householder factors in T and the Householder
vectors stored column-wise below the diagonal of A.

Notes: Note that FLA QR UT solve() and FLASH QR UT solve() may only be used in conjunc-
tion with matrices that have been factorized via FLA QR UT() and FLASH QR UT(), re-
spectively. The output from FLASH QR UT inc() is not compatible with these functions.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, T , B, and X must be identical and floating-point, and

must not be FLA CONSTANT.

• The width of T must be equal to the width of A.

• The number of rows in A and B must be equal, the number of columns of A and the
number of rows of X must be equal, and the number of columns in X and B must be
equal.

Int. Notes: FLA QR UT solve() expects A, T , B, and X to be flat matrix objects.

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .
B – An FLA Obj representing matrix B.
X – An FLA Obj representing matrix X.

5.6. Front-ends 165

void FLASH_QR_UT_inc(FLA_Obj A, FLA_Obj TW);

Purpose: Perform an incremental QR factorization via the UT transform (qrutinc). The opera-
tion is similar to the operation implemented by FLA QR UT(), except that the algorithm
is SuperMatrix-aware. As a consequence, the arguments must be hierarchical objects.

Notes: It is highly recommended that the user create and initialize a flat object containing
the matrix to be factorized and then call FLASH QR UT inc create hier matrices() to
create hierarchical matrices A and TW from the original flat matrix.

Constraints:
• The numerical datatypes of A and TW must be identical and floating-point, and

must not be FLA CONSTANT.

• A must be square.

• A and TW must each have the same number of blocks in the row and column dimen-
sions.

Int. Notes: In addition to the input matrix A, the function requires an additional matrix TW
to hold the triangular factors of the block Householder transformations computed
for each storage block. These transformations are used when applying Q (via
FLASH Apply Q UT inc()). The matrix TW also contains temporary workspace needed
by the incremental QR algorithm.

Imp. Notes: FLASH QR UT inc() uses multiple FLAME/C algorithmic variants to form an algorithm-
by-blocks, which breaks the qrutinc operation into subproblems expressed in terms
of individual blocks of A and then invokes external BLAS routines to perform the
computation on these blocks. The unblocked qrut subproblems are computed by
internal implementations. (External LAPACK routines are not used, even when
external-lapack-for-subproblems option is enabled.)

Imp. Notes: Strictly speaking, the blocks in the lower triangle (including the diagonal) of TW are
used to store the block Householder transformations corresponding to T in FLA QR UT()

while the blocks in the upper triangle of TW are used as workspace only.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:

A – A hierarchical FLA Obj representing matrix A.
TW – A hierarchical FLA Obj representing matrix TW .

166 5. User-level Application Programming Interfaces

void FLASH_QR_UT_inc_solve(FLA_Obj A, FLA_Obj TW, FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of an incremental QR factorization via the UT transform stored in
A and TW to a set of right-hand sides stored in B. Thus, the solution vectors overwrite
X according to the following operation:

X := R−1QHB

where R is an upper triangular matrix, stored in A, and Q is an orthogonal (or unitary)
matrix formed from the upper triangular Householder factors in TW and the Householder
vectors stored column-wise below the diagonal of A.

Notes: Note that FLASH QR UT inc solve() may only be used in conjunction with matrices
that have been factorized via FLASH QR UT inc(). The output from FLA QR UT() is not
compatible with this function.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, TW , B, and X must be identical and floating-point,

and must not be FLA CONSTANT.

• A must be square.

• A and TW must each have the same number of blocks in the row and column
dimensions.

• The number of rows in A and B must be equal, the number of columns of A and the
number of rows of X must be equal, and the number of columns in X and B must be
equal.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:

A – A hierarchical FLA Obj representing matrix A.
TW – A hierarchical FLA Obj representing matrix TW .
B – A hierarchical FLA Obj representing matrix B.
X – A hierarchical FLA Obj representing matrix X.

5.6. Front-ends 167

void FLA_LQ_UT(FLA_Obj A, FLA_Obj T);

void FLASH_LQ_UT(FLA_Obj A, FLA_Obj T);

Purpose: Perform a LQ factorization via the UT transform (lqut):

A → LQH

where Q is an orthogonal matrix (or, a unitary matrix if A is complex) and L is an
lower triangular matrix. The resulting Householder vectors associated with Q are stored
row-wise above the diagonal of A and should only be used with other UT transform
operations. Upon completion, matrix T contains the triangular factors of the block
Householder transformations that were used in the factorization algorithm.

Notes: The matrix factor Q determined by FLA LQ UT() and FLASH LQ UT() is equal to
H0H1 · · ·Hk−1, where Hi is the Householder transformation which annihilates the su-
perdiagonal entries in the ith row of the original matrix A.

Constraints:
• The numerical datatypes of A and T must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to the length of A.

Int. Notes: FLA QR UT() expects A and T to be flat matrix objects.

Imp. Notes: FLA LQ UT() invokes a single FLAME/C variant to induce a blocked algorithm with sub-
problems performed by calling wrappers to external BLAS routines. The unblocked lqut
subproblems are computed by internal implementations. FLASH LQ UT() uses multiple
FLAME/C algorithmic variants to form an algorithm-by-blocks, which breaks the lqut
operation into subproblems expressed in terms of individual blocks (or panels of blocks) of
A and then invokes external BLAS routines to perform the computation on these blocks.
The unblocked lqut subproblems are computed by internal implementations. (External
LAPACK routines are not used, even when external-lapack-for-subproblems option
is enabled.)

Imp. Notes: For FLA LQ UT() , the algorithmic blocksize is determined by the length of T . When in
doubt, create T via FLA LQ UT create T().

Imp. Notes: For FLASH LQ UT() , the algorithmic blocksize b, which corresponds to the scalar length
a single block of T, must be equal to the storage blocksize used in A and T . When in
doubt, create T via FLASH LQ UT create hier matrices().

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .

168 5. User-level Application Programming Interfaces

void FLA_LQ_UT_solve(FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X);

void FLASH_LQ_UT_solve(FLA_Obj A, FLA_Obj T, FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of a LQ factorization via the UT transform stored in A and T to
a set of right-hand sides stored in B. Thus, the solution vectors overwrite X according
to the following operation:

X := QL−1B

where L is an lower triangular matrix, stored in A, and Q is an orthogonal (or unitary)
matrix formed from the upper triangular Householder factors in T and the Householder
vectors stored row-wise above the diagonal of A.

Notes: Note that FLA LQ UT solve() and FLASH LQ UT solve() may only be used in conjunc-
tion with matrices that have been factorized via FLA LQ UT() and FLASH LQ UT(), re-
spectively.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, T , B, and X must be identical and floating-point, and

must not be FLA CONSTANT.

• The width of T must be equal to the length of A.

• The number of rows in A and B must be equal, the number of columns of A and the
number of rows of X must be equal, and the number of columns in X and B must be
equal.

Int. Notes: FLA LQ UT solve() expects A, T , B, and X to be flat matrix objects.

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .
B – An FLA Obj representing matrix B.
X – An FLA Obj representing matrix X.

5.6. Front-ends 169

void FLASH_CAQR_UT_inc(dim_t p, FLA_Obj A, FLA_Obj ATW, FLA_Obj R, FLA_Obj RTW);

Purpose: Perform an incremental communication-avoiding QR factorization via the UT transform
(caqrutinc). The operation is performed in two stages. First, the input matrix A is
partitioned into p panels,

A→


A0

A1

...
Ap−1


and incremental QR factorizations are performed on each submatrix Ai, with the re-
sulting Householder vectors overwriting the blocks of Ai and the corresponding block
Householder triangular factors stored to ATW . This results in p upper triangular fac-
tors overwriting the upper triangles of Ai. In the second stage, the upper triangles of Ai
are copied to Ri, and then R1, . . . , Rp−1 are individually factored against submatrix R0

in a manner similar to that used in an incremental QR factorization, except the upper
triangular structure of each Ri submatrix is leveraged to avoid computing with implicit
zeros. The resulting Householder vectors of the second stage overwrite the various blocks
of R1, . . . , Rp−1. The algorithm is SuperMatrix-aware. As a consequence, the arguments
must be hierarchical objects.

Notes: It is highly recommended that the user create and initialize a flat object containing the
matrix to be factorized and then call FLASH CAQR UT inc create hier matrices() to
create hierarchical matrices A and TW from the original flat matrix.

Constraints:
• The numerical datatypes of A, ATW , R, and RTW must be identical and floating-

point, and must not be FLA CONSTANT.

• A, ATW , R, and RTW must each have the same number of blocks in the row and
column dimensions.

Int. Notes: In addition to the input matrix A and workspace/output matrix R, the function requires
two additional matrices ATW and RTW to hold the triangular factors of the block
Householder transformations computed for each storage block. These transformations
are used when applying the matrices QA and QR associated with the first and second
factorization stages. The matrices ATW and RTW also contain temporary workspace
needed by both stages.

Imp. Notes: FLASH CAQR UT inc() uses multiple FLAME/C algorithmic variants to form an
algorithm-by-blocks, which breaks the caqrutinc operation into subproblems expressed
in terms of individual blocks of A and then invokes external BLAS routines to perform
the computation on these blocks. The unblocked caqrut subproblems are computed
by internal implementations. (External LAPACK routines are not used, even when
external-lapack-for-subproblems option is enabled.)

Imp. Notes: Strictly speaking, the blocks in the lower triangle (including the diagonal) of ATW are
used to store the block Householder transformations corresponding to T in FLA QR UT()

while the blocks in the upper triangle of ATW are used as workspace only. This is the
case for RTW as well.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:
p – An unsigned integer representing the number of panels into which A

is partitioned during the first stage of factorization.
A – A hierarchical FLA Obj representing matrix A.
ATW – A hierarchical FLA Obj representing matrix ATW .
R – A hierarchical FLA Obj representing matrix R.
RTW – A hierarchical FLA Obj representing matrix RTW .

170 5. User-level Application Programming Interfaces

void FLASH_CAQR_UT_inc_solve(dim_t p, FLA_Obj A, FLA_Obj ATW, FLA_Obj R, FLA_Obj RTW,

FLA_Obj B, FLA_Obj X);

Purpose: Solve one or more general linear systems,

AX = B

by applying the results of an incremental communication-avoiding QR factorization via
the UT transform stored in A and ATW , and R and RTW , to a set of right-hand sides
stored in B. Thus, the solution vectors overwrite X according to the following operation:

X := R−10 QHRQ
H
AB

where R0 is the first upper triangular submatrix in R, QA is an orthogonal (or unitary)
matrix formed from the upper triangular Householder factors in ATW and the House-
holder vectors stored column-wise below the diagonals of the p subpartitions of A, and
QR is the orthogonal (or unitary) matrix formed from the upper triangular Householder
factors in RTW and the Householder vectors stored columnwise in the upper triangles
of the p subpartitions of R.

Notes: Note that FLASH CAQR UT inc solve() may only be used in conjunction with matrices
that have been factorized via FLASH CAQR UT inc(). The output from FLA QR UT() and
FLASH QR UT inc() are not compatible with this function.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of A, ATW , R, RTW , B, and X must be identical and

floating-point, and must not be FLA CONSTANT.

• A, ATW , R, and RTW must each have the same number of blocks in the row and
column dimensions.

• The number of rows in A and B must be equal, the number of columns of A and the
number of rows of X must be equal, and the number of columns in X and B must be
equal.

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:
p – An unsigned integer representing the number of panels into which A

is partitioned during the first stage of factorization.
A – A hierarchical FLA Obj representing matrix A.
ATW – A hierarchical FLA Obj representing matrix ATW .
R – A hierarchical FLA Obj representing matrix R.
RTW – A hierarchical FLA Obj representing matrix RTW .
B – A hierarchical FLA Obj representing matrix B.
X – A hierarchical FLA Obj representing matrix X.

5.6. Front-ends 171

void FLA_UDdate_UT(FLA_Obj R, FLA_Obj C, FLA_Obj D, FLA_Obj T);

Purpose: Perform an up-and-downdate (uddateut) of the upper triangular factor R (via up-
and-downdating UT transforms) that arises from solving a linear least-squares problem,
Ax = y. Note that such a problem

Ax = y

is typically solved via one of two methods. In the first method, the Cholesky factor R
of AHA is used to solve

AHAx = AHy
RHRx =

In the second method, the QR factorization of A is used to solve

Rx = QHy

Let us assume that we begin with A and y such that

(
A y

)
=

(
B b

D d

)
and R has already been computed, via one of the two methods above. Let us further
assume that we wish to update R to reflect a new system consisting of Ã and ỹ such that

(
Ã ỹ

)
=

(
B b

C c

)
The uddateut operation simultaneously (a) updates the upper triangular factor R to
include the contributions of C and (b) downdates R to remove the contributions of D
without explicitly performing a new factorization (Cholesky or QR) using Ã. Upon
completion, the operation will have overwritten the jth columns of C and D with the
vectors uj and vj , respectively, associated with the up-and-downdating Householder
transforms Gj used to annihilate the corresponding columns of C and D. Similarly, the
operation sets matrix T to contain the upper triangular factors of the block Householder
transforms used in the up-and-downdate. These triangular factors are re-used when
applying the transforms to the right-hand sides.

Notes: This operation only up-and-downdates R. To up-and-downdate the right-hand side of a
linear least-squares system, use FLA UDdate UT update rhs().

Constraints:
• The numerical datatypes of R, C, D, and T must be identical and floating-point, and

must not be FLA CONSTANT.

• R must be square.

• The widths of R, C, D, and T must be equal.

Int. Notes: FLA UDdate UT() expects R, C, D, and T to be flat matrix objects.

Imp. Notes: FLA UDdate UT() invokes a single FLAME/C variant to induce a blocked algorithm
with subproblems performed by calling wrappers to external BLAS routines. The un-
blocked uddateut subproblems are computed by internal implementations. (External
LAPACK routines are not used, even when external-lapack-for-subproblems option
is enabled.)

Imp. Notes: The algorithmic blocksize b is determined by the length of T . When in doubt, create T
via FLA UDdate UT create T().

Arguments:

R – An FLA Obj representing matrix R.
C – An FLA Obj representing matrix C.
D – An FLA Obj representing matrix D.
T – An FLA Obj representing matrix T .

172 5. User-level Application Programming Interfaces

void FLA_UDdate_UT_update_rhs(FLA_Obj T, FLA_Obj bR,

FLA_Obj C, FLA_Obj bC,

FLA_Obj D, FLA_Obj bD);

Purpose: Perform an up-and-downdate of the right-hand maintained when solving a linear least-
squares system Ax = y. Note that the right-hand side that is updated, bR, is initially
computed either as

AHy = bR

when the method of normal equations is used, or

QHy = bR

when a QR factorization is used, where y =

(
bB

bD

)
. This operation assumes the

user wishes to be able to solve a new system, Ãx = ỹ, that would result in R̃HR̃x = ÃH ỹ

(normal equations) or R̃x = Q̃H ỹ (QR factorization), where ỹ =

(
bB

bC

)
and R̃

has already been computed from the original matrix R by FLA UDdate UT(). Thus,
FLA UDdate UT update rhs() updates bR such that it removes the contributions of bD
and includes the contributions of of bC . In other words, upon completion, bR contains
the values it would have contained as if it had been computed via fully-formed ỹ and Ã.
Note that the operation preserves the original values of bC and bD.

Notes: FLA UDdate UT update rhs() should be invoked using the C, D, and T matrices that
were updated by the FLA UDdate UT() during the up-and-downdate of the upper trian-
gular factor R. Subsequent to the up-and-downdate of the right-hand side, the user may
use FLA UDdate UT solve() to solve the updated system.

Constraints:
• The numerical datatypes of T , C, D, bR, bC , and bD must be identical and floating-

point, and must not be FLA CONSTANT.

• The widths of T , C, and D must be equal.

• The widths of bR, bC , and bD must be equal.

• The length of bR must equal the width of T ; the length of bC must equal the length
of C; and the length of bD must equal the lenght of D.

Int. Notes: FLA UDdate UT() expects R, C, D, and T to be flat matrix objects.

Imp. Notes: FLA UDdate UT update rhs() is implemented as a convenience wrapper to
FLA Apply QUD UT create workspace() and FLA Apply QUD UT().

Imp. Notes: The algorithmic blocksize b is determined by the length of T . When in doubt, create T
via FLA UDdate UT create T().

Arguments:

T – An FLA Obj representing matrix T .
b R – An FLA Obj representing matrix bR.
C – An FLA Obj representing matrix C.
b C – An FLA Obj representing matrix bC .
D – An FLA Obj representing matrix D.
b D – An FLA Obj representing matrix bD.

5.6. Front-ends 173

void FLA_UDdate_UT_solve(FLA_Obj R, FLA_Obj bR, FLA_Obj x);

Purpose: Solve one or more linear least-squares systems using the upper triangular factor R and
the right-hand side bR. Presumably the user has already up-and-downdated R, via
FLA UDdate UT(), and bR, via FLA UDdate UT update rhs().

Notes: Note that FLA UDdate UT solve() may only be used in conjunction with matrices that
have been factorized via FLA UDdate UT(). The output from FLASH UDdate UT inc() is
not compatible with this function.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of R, bR, and x must be identical and floating-point, and

must not be FLA CONSTANT.

• The order of R and the length of bR must be equal; the width of bR and the width of
x must be equal.

Int. Notes: FLA UDdate UT solve() expects R, bR, and x to be flat matrix objects.

Arguments:

R – An FLA Obj representing matrix R.
b R – An FLA Obj representing matrix bR.
x – An FLA Obj representing matrix x.

174 5. User-level Application Programming Interfaces

void FLASH_UDdate_UT_inc(FLA_Obj R, FLA_Obj C, FLA_Obj D, FLA_Obj T, FLA_Obj W);

Purpose: Perform an incremental up-and-downdate (uddateutinc) of the upper triangular fac-
tor R (via up-and-downdating UT transforms) that arises from solving a linear least-
squares problem, Ax = y. The operation is similar to the operation implemented by
FLA UDdate UT(), except that the algorithm is SuperMatrix-aware. As a consequence,
the arguments must be hierarchical objects.

Notes: It is highly recommended that the user create and initialize flat objects
containing the matrices to be used in the up-and-downdate and then call
FLASH UDdate UT inc create hier matrices() to create hierarchical matrices R, C,
D, T , and W from the original flat matrices.

Constraints:
• The numerical datatypes of R, C, D, T , and W must be identical and floating-point,

and must not be FLA CONSTANT.

• R must be square.

• The widths of R, C, D, and T must be equal.

• The number of blocks in the column dimension of T must be equal to the number of
blocks in the column dimension of R; the number of blocks in the row dimension of T
must be equal to the greater of the number of blocks in the row dimension of C and D.

• The block dimensions of W must be conformal to that of R.

Int. Notes: In addition to the input matrices R, C, and D, the function requires an additional ma-
trix T to hold the upper triangular factors of the block up-and-downdating UT House-
holder transformations computed for each storage block. These transformations are used
when applying Q (via FLASH Apply QUD UT inc()). The matrix W contains temporary
workspace needed by the incremental up-and-downdating algorithm.

Imp. Notes: FLASH UDdate UT inc() uses multiple FLAME/C algorithmic variants to form an
algorithm-by-blocks, which breaks the uddateutinc operation into subproblems ex-
pressed in terms of individual blocks of R, C, and D, and then invokes external BLAS
routines to perform the computation on these blocks. The unblocked uddateut sub-
problems are computed by internal implementations. (External LAPACK routines are
not used, even when external-lapack-for-subproblems option is enabled.)

Caveats: Currently, this function only supports matrices with hierarchical depths of exactly 1.

Arguments:

R – A hierarchical FLA Obj representing matrix R.
C – A hierarchical FLA Obj representing matrix C.
D – A hierarchical FLA Obj representing matrix D.
T – A hierarchical FLA Obj representing matrix T .
W – A hierarchical FLA Obj representing matrix W .

5.6. Front-ends 175

void FLASH_UDdate_UT_inc_update_rhs(FLA_Obj T, FLA_Obj bR,

FLA_Obj C, FLA_Obj bC,

FLA_Obj D, FLA_Obj bD);

Purpose: Perform an incremental up-and-downdate of the right-hand maintained when solving
a linear least-squares system Ax = y. The operation is similar to the operation im-
plemented by FLA UDdate UT update rhs(), except that the algorithm is SuperMatrix-
aware. As a consequence, the arguments must be hierarchical objects.

Notes: FLASH UDdate UT inc update rhs() should be invoked using the C, D, and T matrices
that were updated by the FLASH UDdate UT inc() during the up-and-downdate of the
upper triangular factor R. Subsequent to the up-and-downdate of the right-hand side,
the user may use FLASH UDdate UT inc solve() to solve the updated system.

Constraints:
• The numerical datatypes of T , C, D, bR, bC , and bD must be identical and floating-

point, and must not be FLA CONSTANT.

• The widths of T , C, and D must be equal.

• The widths of bR, bC , and bD must be equal.

• The length of bR must equal the width of T ; the length of bC must equal the length
of C; and the length of bD must equal the lenght of D.

Imp. Notes: FLASH UDdate UT inc update rhs() is implemented as a convenience wrapper to
FLASH Apply QUD UT inc create workspace() and FLASH Apply QUD UT inc().

Arguments:

T – A hierarchical FLA Obj representing matrix T .
b R – A hierarchical FLA Obj representing matrix bR.
C – A hierarchical FLA Obj representing matrix C.
b C – A hierarchical FLA Obj representing matrix bC .
D – A hierarchical FLA Obj representing matrix D.
b D – A hierarchical FLA Obj representing matrix bD.

void FLASH_UDdate_UT_inc_solve(FLA_Obj R, FLA_Obj bR, FLA_Obj x);

Purpose: Solve one or more linear least-squares systems using the upper triangular factor R and
the right-hand side bR. Presumably the user has already up-and-downdated R, via
FLASH UDdate UT inc(), and bR, via FLASH UDdate UT inc update rhs(). The opera-
tion is similar to the operation implemented by FLA UDdate UT solve(), except that the
algorithm is SuperMatrix-aware. As a consequence, the arguments must be hierarchical
objects.

Notes: Note that FLASH UDdate UT inc solve() may only be used in conjunction with ma-
trices that have been factorized via FLASH UDdate UT inc(). The output from
FLA UDdate UT() is not compatible with this function.

Returns: FLA SUCCESS

Constraints:
• The numerical datatypes of R, bR, and x must be identical and floating-point, and

must not be FLA CONSTANT.

• The order of R and the length of bR must be equal; the width of bR and the width of
x must be equal.

Arguments:

R – A hierarchical FLA Obj representing matrix R.
b R – A hierarchical FLA Obj representing matrix bR.
x – A hierarchical FLA Obj representing matrix x.

176 5. User-level Application Programming Interfaces

void FLA_Hess_UT(FLA_Obj A, FLA_Obj T);

Purpose: Perform a reduction to upper Hessenberg form via the UT transform (hessut)

A → QRQH

where A is a general square matrix, Q is an orthogonal matrix (or, a unitary matrix if A is
complex) and R is an upper Hessenberg matrix (zeroes below the first subdiagonal). The
resulting Householder vectors associated with Q are stored column-wise below the first
subdiagonal of A and should only be used with other UT transform operations. Upon
completion, matrix T contains the upper triangular factors of the block Householder
transformations that were used in the reduction algorithm.

Notes: When using FLA Hess UT(), the Householder vectors associated with matrix Q are
stored, in which case Q is equal to H0H1 · · ·Hk−2, where HH

i is the Householder trans-
formation which annihilates entries below the first subdiagonal in the ith column of the
original matrix A.

Constraints:
• The numerical datatypes of A and T must be identical and floating-point, and must

not be FLA CONSTANT.

• A must be square.

• The width of T must be n where A is n× n.

Int. Notes: FLA Hess UT() expects A and T to be flat matrix objects.

Imp. Notes: FLA Hess UT() invokes a single FLAME/C variant to induce a blocked algorithm with
subproblems performed by calling wrappers to external BLAS routines. The unblocked
hessut subproblems are computed by internal implementations. (External LAPACK
routines are not used, even when external-lapack-for-subproblems option is en-
abled.)

Imp. Notes: The algorithmic blocksize b is determined by the length of T . When in doubt, create T
via FLA Hess UT create T().

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .

5.6. Front-ends 177

void FLA_Tridiag_UT(FLA_Uplo uplo, FLA_Obj A, FLA_Obj T);

Purpose: Perform a reduction to tridiagonal form via the UT transform (tridiagut)

A → QRQH

where A is a symmetric (or, if A is complex, Hermitian) matrix, Q is an orthogonal (or, if
A is complex, unitary) matrix and R is a tridiagonal matrix (zeroes below the first sub-
diagonal and above the first superdiagonal). Note, however, that FLA Tridiag UT()

only reads and updates the triangle specified by uplo. The resulting Householder
vectors associated with Q are stored column-wise below the first subdiagonal of A if
uplo is FLA LOWER TRIANGULAR and row-wise above the first superdiagonal if uplo is
FLA UPPER TRIANGULAR. Upon completion, matrix T contains the upper triangular fac-
tors of the block Householder transformations that were used in the reduction algorithm.

Notes: If A is complex, the tridiagonal matrix that results from the reduction operation
contains complex sub- and super-diagonals (though, only one of which is stored, as
specified by uplo). The matrix may further be reduced to real tridiagonal form via
FLA Tridiag UT realify().

Constraints:
• The numerical datatypes of A and T must be identical and floating-point, and must

not be FLA CONSTANT.

• A must be square.

• The width of T must be n where A is n× n.

Int. Notes: FLA Tridiag UT() expects A and T to be flat matrix objects.

Imp. Notes: FLA Tridiag UT() invokes a single FLAME/C variant to induce a blocked algorithm
with subproblems performed by calling wrappers to external BLAS routines. The un-
blocked tridiagut subproblems are computed by internal implementations. (External
LAPACK routines are not used, even when external-lapack-for-subproblems option
is enabled.)

Imp. Notes: The algorithmic blocksize b is determined by the length of T . When in doubt, create T
via FLA Tridiag UT create T().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten during the operation.
A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .

178 5. User-level Application Programming Interfaces

void FLA_Bidiag_UT(FLA_Obj A, FLA_Obj TU, FLA_Obj TV);

Purpose: Perform a reduction to bidiagonal form via the UT transform (bidiagut)

A → QURQ
H
V

where A is a general m × n matrix, QU and QV are orthogonal (or, if A is complex,
unitary) matrices, and R is a bidiagonal matrix. If m ≥ n, R is upper bidiagonal
(zeroes below the diagonal and above the first superdiagonal). Otherwise, if m < n, R
is lower bidiagonal (zeroes above the diagonal and below the first subdiagonal). When
R is upper bidiagonal, the resulting Householder vectors associated with QU and QV
are stored column-wise below the diagonal and row-wise above the first superdiagonal,
respectively. When R is lower bidiagonal, the resulting Householder vectors associated
with QU and QV are stored column-wise below the first subdiagonal and row-wise above
the diagonal, respectively. Upon completion, matrices TU and TV contain the upper
triangular factors of the block Householder transformations corresponding to QU and
QV , respectively, that were used in the reduction algorithm.

Constraints:
• The numerical datatypes of A, TU , and TV must be identical and floating-point, and

must not be FLA CONSTANT.

• The widths of TU and TV must be min(m,n).

Int. Notes: FLA Bidiag UT() expects A, TU , and TV to be flat matrix objects.

Imp. Notes: FLA Bidiag UT() invokes a single FLAME/C variant to induce a blocked algorithm
with subproblems performed by calling wrappers to external BLAS routines. The un-
blocked bidiagut subproblems are computed by internal implementations. (External
LAPACK routines are not used, even when external-lapack-for-subproblems option
is enabled.)

Imp. Notes: The algorithmic blocksize b is determined by the length of TU and TV . When in doubt,
create TU and TV via FLA Bidiag UT create T().

Arguments:

A – An FLA Obj representing matrix A.
TU – An FLA Obj representing matrix TU .
TV – An FLA Obj representing matrix TV .

5.6. Front-ends 179

void FLA_Apply_Q_UT(FLA_Side side, FLA_Trans trans, FLA_Direct direct, FLA_Store storev,

FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B);

void FLASH_Apply_Q_UT(FLA_Side side, FLA_Trans trans, FLA_Direct direct, FLA_Store storev,

FLA_Obj A, FLA_Obj T, FLA_Obj W, FLA_Obj B);

Purpose: Apply a matrix Q (or QH) to a general matrix B from either the left or the right (apqut):

B := QB B := BQ

B := QHB B := BQH

where Q is the orthogonal (or, if A is complex, unitary) matrix implicitly defined by the
Householder vectors stored in matrix A and the triangular factors stored in matrix T by
FLA QR UT() (or FLASH QR UT()) or FLA LQ UT()(or FLASH LQ UT()). Matrix W is used
as workspace. The side argument indicates whether Q is applied to B from the left or
the right. The trans argument indicates whether Q or QH is applied to B. The direct

argument indicates whether Q is assumed to be the forward product H0H1 · · ·Hk−1 or
the backward product Hk−1 · · ·H1H0 of Householder transforms, where k is the width of
T . The storev argument indicates whether the Householder vectors which correspond
to H0H1 · · ·Hk−1 are stored column-wise (in the strictly lower triangle, as computed by
a QR factorization) or row-wise (in the strictly upper triangle, as computed by an LQ
factorization) in A.

Constraints:
• The numerical datatypes of A, T , W , and B must be identical and floating-point,

and must not be FLA CONSTANT.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• If A is real, then trans must be FLA NO TRANSPOSE or FLA TRANSPOSE; otherwise if A
is complex, then trans must be FLA NO TRANSPOSE or FLA CONJ TRANSPOSE.

• The dimensions of W must be mT ×nB where mT is the number of rows in T and nB
is the number of columns in B.

Int. Notes: FLA Apply Q UT() expects A, T , W , and B to be flat matrix objects.

Imp. Notes: FLA Apply Q UT() invokes one or more FLAME/C variants to induce a blocked al-
gorithm with subproblems performed by calling wrappers to external BLAS routines.
FLASH Apply Q UT() invokes one or more FLAME/C variants to induce an algorithm-
by-blocks with subproblems performed by calling wrappers to external BLAS routines.

Arguments:

side – Indicates whether Q (or QH) is multipled on the left or right side of
B.

trans – Indicates whether the operation proceeds as if Q were transposed (or
conjugate-transposed).

direct – Indicates whether Q is formed from the forward or backward product
of its constituent Householder reflectors.

storev – Indicates whether the vectors stored within A are stored column-wise
or row-wise.

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .
W – An FLA Obj representing matrix W .
B – An FLA Obj representing matrix B.

180 5. User-level Application Programming Interfaces

void FLASH_Apply_Q_UT_inc(FLA_Side side, FLA_Trans trans, FLA_Direct direct,

FLA_Store storev,

FLA_Obj A, FLA_Obj TW, FLA_Obj W, FLA_Obj B);

Purpose: Apply a matrix Q (or QH) to a general matrix B from either the left or the right
(apqutinc):

B := QB B := BQ

B := QHB B := BQH

where Q is the orthogonal (or, if A is complex, unitary) matrix implicitly defined by the
Householder vectors stored in matrix A and the triangular factors stored in matrix TW
by FLASH QR UT inc(). Matrix W is used as workspace. The side argument indicates
whether Q is applied to B from the left or the right. The trans argument indicates
whether Q or QH is applied to B. The direct argument indicates whether Q was com-
puted as the forward product H0H1 · · ·Hk−1 or the backward product Hk−1 · · ·H1H0.
The storev argument indicates whether the Householder vectors which define Q are
stored column-wise (in the strictly lower triangle) or row-wise (in the strictly upper
triangle) of A.

Constraints:
• The numerical datatypes of A, TW , W , and B must be identical and floating-point,

and must not be FLA CONSTANT.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• If A is real, then trans must be FLA NO TRANSPOSE or FLA TRANSPOSE; otherwise if A
is complex, then trans must be FLA NO TRANSPOSE or FLA CONJ TRANSPOSE.

• The dimensions of W must be mTW × nB where mTW is the scalar length of a single
block of TW and nB is the scalar width of B.

Imp. Notes: FLASH Apply Q UT inc() uses multiple FLAME/C algorithmic variants to form an
algorithm-by-blocks, which breaks the apqutinc operation into subproblems expressed
in terms of individual blocks of A, TW , W , and B and then invokes external BLAS
routines to perform the computation on these blocks.

Caveats: FLASH Apply Q UT inc() currently only works for hierarchical matrices of depth 1 where
A refers to a single storage block. FLASH Apply Q UT inc() is currently only imple-
mented for the cases where side is FLA LEFT, direct is FLA FORWARD, and storev is
FLA COLUMNWISE.

Arguments:

side – Indicates whether Q (or QH) is multipled on the left or right side of
B.

trans – Indicates whether the operation proceeds as if Q were transposed (or
conjugate-transposed).

direct – Indicates whether Q is formed from the forward or backward product
of its constituent Householder reflectors.

storev – Indicates whether the vectors stored within A are stored column-wise
or row-wise.

A – A hierarchical FLA Obj representing matrix A.
TW – A hierarchical FLA Obj representing matrix TW .
W – A hierarchical FLA Obj representing matrix W .
B – A hierarchical FLA Obj representing matrix B.

5.6. Front-ends 181

void FLA_Apply_QUD_UT(FLA_Side side, FLA_Trans trans, FLA_Direct direct, FLA_Store storev,

FLA_Obj T, FLA_Obj W,

FLA_Obj R,

FLA_Obj U, FLA_Obj C,

FLA_Obj V, FLA_Obj D);

Purpose: Apply a matrix QH to general matrices R, C, and D from the left (apqudut): R

C

D

 := QH

 R

C

D


where Q is the orthogonal (or, if the matrices are complex, unitary) matrix implicitly
defined by the up-and-downdating UT Householder vectors stored columnwise in U and
V and the upper triangular factors stored in matrix T by FLA UDdate UT(). Matrix W
is used as workspace.

Constraints:
• The numerical datatypes of T , W , R, U , C, V , and D must be identical and

floating-point, and must not be FLA CONSTANT.

• The number of columns in T must be equal to the number of columns in U and V .

• The number of columns in W must be equal to the number of columns in R.

• The number of rows in C and the number of rows in U must be equal; the number
of columns in C and the number of columns of R must be equal; and the number of
columns in U and the number of rows in R must be equal.

• The number of rows in D and the number of rows in V must be equal; the number
of columns in D and the number of columns of R must be equal; and the number of
columns in V and the number of rows in R must be equal.

Int. Notes: FLA Apply QUD UT() expects T , W , R, U , C, V , and D to be flat matrix objects.

Imp. Notes: FLA Apply QUD UT() invokes one or more FLAME/C variants to induce a blocked algo-
rithm with subproblems performed by calling wrappers to external BLAS routines.

Caveats: FLA Apply QUD UT() is currently only implemented for the case where side is
FLA LEFT, trans is FLA CONJ TRANSPOSE (or FLA TRANSPOSE for real matrices), direct
is FLA FORWARD, and storev is FLA COLUMNWISE.

Arguments:

side – Indicates whether Q (or QH) is multipled on the left or right side of
B.

trans – Indicates whether the operation proceeds as if Q were transposed (or
conjugate-transposed).

direct – Indicates whether Q is formed from the forward or backward product
of its constituent Householder reflectors.

storev – Indicates whether the vectors stored within U and V are stored
column-wise or row-wise.

T – An FLA Obj representing matrix T .
W – An FLA Obj representing matrix W .
R – An FLA Obj representing matrix R.
U – An FLA Obj representing matrix U .
C – An FLA Obj representing matrix C.
V – An FLA Obj representing matrix V .
D – An FLA Obj representing matrix D.

182 5. User-level Application Programming Interfaces

void FLASH_Apply_QUD_UT_inc(FLA_Side side, FLA_Trans trans,

FLA_Direct direct, FLA_Store storev,

FLA_Obj T, FLA_Obj W,

FLA_Obj R,

FLA_Obj U, FLA_Obj C,

FLA_Obj V, FLA_Obj D);

Purpose: Apply a matrix QH to general matrices R, C, and D from the left (apqudutinc): R

C

D

 := QH

 R

C

D


where Q is the orthogonal (or, if the matrices are complex, unitary) matrix implicitly
defined by the up-and-downdating UT Householder vectors stored columnwise in U and V
and the upper triangular factors stored in matrix T by FLASH UDdate UT inc(). Matrix
W is used as workspace. The operation is similar to the operation implemented by
FLA Apply QUD UT(), except that the algorithm is SuperMatrix-aware. As a consequence,
the arguments must be hierarchical objects.

Constraints:
• The numerical datatypes of T , W , R, U , C, V , and D must be identical and

floating-point, and must not be FLA CONSTANT.

• The number of columns in T must be equal to the number of columns in U and V .

• The number of columns in W must be equal to the number of columns in R.

• The number of rows in C and the number of rows in U must be equal; the number
of columns in C and the number of columns of R must be equal; and the number of
columns in U and the number of rows in R must be equal.

• The number of rows in D and the number of rows in V must be equal; the number
of columns in D and the number of columns of R must be equal; and the number of
columns in V and the number of rows in R must be equal.

Imp. Notes: FLASH Apply QUD UT inc() uses multiple FLAME/C algorithmic variants to form an
algorithm-by-blocks, which breaks the apqudutinc operation into subproblems ex-
pressed in terms of individual blocks of A and then invokes external BLAS routines
to perform the computation on these blocks. (External LAPACK routines are not used,
even when external-lapack-for-subproblems option is enabled.)

Caveats: FLASH Apply QUD UT inc() is currently only implemented for the case where side is
FLA LEFT, trans is FLA CONJ TRANSPOSE (or FLA TRANSPOSE for real matrices), direct
is FLA FORWARD, and storev is FLA COLUMNWISE.

Arguments:

side – Indicates whether Q (or QH) is multipled on the left or right side of
B.

trans – Indicates whether the operation proceeds as if Q were transposed (or
conjugate-transposed).

direct – Indicates whether Q is formed from the forward or backward product
of its constituent Householder reflectors.

storev – Indicates whether the vectors stored within U and V are stored
column-wise or row-wise.

T – A hierarchical FLA Obj representing matrix T .
W – A hierarchical FLA Obj representing matrix W .
R – A hierarchical FLA Obj representing matrix R.
U – A hierarchical FLA Obj representing matrix U .
C – A hierarchical FLA Obj representing matrix C.
V – A hierarchical FLA Obj representing matrix V .
D – A hierarchical FLA Obj representing matrix D.

5.6. Front-ends 183

void FLA_Ttmm(FLA_Uplo uplo, FLA_Obj A);

void FLASH_Ttmm(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform one of the following triangular-transpose matrix multiplies (ttmm):

A := LTL

A := UUT

A := LHL

A := UUH

where A is a triangular matrix with a real diagonal. The operation references and then
overwrites the lower or upper triangle of A with one of the products specified above,
depending on the value of uplo.

Notes: FLA Ttmm() may not be used for a general-purpose triangular matrix since the function
assumes that the diagonal of L (or U) is real.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• diag may not be FLA ZERO DIAG.

• A must be square.

Int. Notes: FLA Ttmm() expects A to be a flat matrix object.

Imp. Notes: FLA Ttmm() invokes one or more FLAME/C variants to induce a blocked algorithm with
subproblems performed by calling wrappers to external BLAS routines. FLASH Ttmm()

uses multiple FLAME/C algorithmic variants to form an algorithm-by-blocks, which
breaks the ttmm operation into subproblems expressed in terms of individual blocks of
A and then invokes external BLAS routines to perform the computation on these blocks.
By default, the unblocked ttmm subproblems are computed by internal implementations.
However, if the external-lapack-for-subproblems option is enabled at configure-time,
these subproblems are computed by external unblocked LAPACK routines.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten during the operation.
A – An FLA Obj representing matrix A.

184 5. User-level Application Programming Interfaces

FLA_Error FLA_Trinv(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

FLA_Error FLASH_Trinv(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

Purpose: Perform a triangular matrix inversion (trinv):

A := A−1

where A is a general triangular matrix. The operation references and then overwrites
the lower or upper triangle of A with its inverse, A−1, depending on the value of uplo.
The diag argument indicates whether the diagonal of A is unit or non-unit.

Returns: FLA SUCCESS if the operation is successful; otherwise, if A is singular, a signed integer
corresponding to the row/column index at which the algorithm detected a zero entry
along the diagonal. The row/column index is zero-based, and thus its possible range
extends inclusively from 0 to n− 1.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• diag may not be FLA ZERO DIAG.

• A must be square.

Int. Notes: FLA Trinv() expects A to be a flat matrix object.

Imp. Notes: FLA Trinv() invokes one or more FLAME/C variants to induce a blocked algorithm with
subproblems performed by calling wrappers to external BLAS routines. FLASH Trinv()

uses multiple FLAME/C algorithmic variants to form an algorithm-by-blocks, which
breaks the trinv operation into subproblems expressed in terms of individual blocks of
A and then invokes external BLAS routines to perform the computation on these blocks.
By default, the unblocked trinv subproblems are computed by internal implementations.
However, if the external-lapack-for-subproblems option is enabled at configure-time,
these subproblems are computed by external unblocked LAPACK routines.

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten during the operation.
diag – Indicates whether the diagonal of A is unit or non-unit.
A – An FLA Obj representing matrix A.

5.6. Front-ends 185

void FLA_SPDinv(FLA_Uplo uplo, FLA_Obj A);

void FLASH_SPDinv(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform a positive definite matrix inversion (spdinv):

A := A−1

where A is positive definite. If A is real, then it is assumed to be symmetric; otherwise,
if A is complex, then it is assumed to be Hermitian. The operation references and then
overwrites the lower or upper triangle of A with the corresponding triangle of its inverse,
A−1. The triangle referenced and overwritten is determined by the value of uplo.

Notes: Given a real symmetric positive definite matrix A, there exists a factor L such that
A = LLT . Therefore,

A−1 = (LLT)−1

= L−TL−1

Similarly, for a complex Hermitian positive definite matrix A, there exists a factor such
that A = LLH :

A−1 = (LLH)−1

= L−HL−1

From this, we observe that the inverse of symmetric positive definite matrices may be
computed by multiplying the inverse of the the Cholesky factor L by its transpose,
or in the case of Hermitian positive definite matrices, its conjugate-transpose. Similar
observations may be made provided L = UT and L = UH for real and complex matrices,
respectively.

Returns: If A is not positive definite, then FLASH SPDinv() will return the row/column index at
which the algorithm detected a negative or non-real entry along the diagonal. If the
Cholesky factorization of A succeeds but the Cholesky factor is found to be singular,
then FLASH SPDinv() will return the row/column index at which the algorithm detected
a zero entry along the diagonal. In either case, the row/column index is zero-based, and
thus its possible range extends inclusively from 0 to n− 1. Otherwise, FLASH SPDinv()

returns FLA SUCCESS if the operation is successful.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• A must be square.

Int. Notes: FLA SPDinv() expects A to be a flat matrix object.

Imp. Notes: FLA SPDinv() is implemented in terms of FLA Chol(), FLA Trinv(), and FLA Ttmm().
FLASH SPDinv() is implemented in terms of FLASH Chol(), FLASH Trinv(), and
FLASH Ttmm().

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten during the operation.
diag – Indicates whether the diagonal of A is unit or non-unit.
A – An FLA Obj representing matrix A.

186 5. User-level Application Programming Interfaces

void FLA_Eig_gest(FLA_Inv inv, FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

void FLASH_Eig_gest(FLA_Inv inv, FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following operations to reduce a symmetric- or Hermitian-definite
eigenproblem to standard form (eiggest):

A := LHAL

A := UAUH

A := LAL−H

A := U−HAU

where A, on input and output, is symmetric (or Hermitian) and B contains either a
lower (L) or upper (U) triangular Cholesky factor. The value of inv determines whether
the operation, as expressed above, requires an inversion of L or U . The value of uplo
determines which triangle of A is read on input, which triangle of the symmetric (or
Hermitian) right-hand side is stored, and also which Cholesky factor exists in B.

Constraints:
• The numerical datatypes of A and B must be identical and floating-point, and must

not be FLA CONSTANT.

• A and B must be square.

Int. Notes: FLA Eig gest() expects A and B to be flat matrix objects.

Imp. Notes: FLA Eig gest() invokes one or more FLAME/C variants to induce a blocked algo-
rithm with subproblems performed by calling wrappers to external BLAS routines.
FLASH Eig gest() uses multiple FLAME/C algorithmic variants to form an algorithm-
by-blocks, which breaks the eiggest operation into subproblems expressed in terms of
individual blocks of A and then invokes external BLAS routines to perform the compu-
tation on these blocks. By default, the unblocked eiggest subproblems are computed
by internal implementations. However, if the external-lapack-for-subproblems op-
tion is enabled at configure-time, these subproblems are computed by external unblocked
LAPACK routines.

Arguments:
inv – Indicates whether the operation requires a multiplication by the in-

verse of L or U .
uplo – Indicates whether the lower or upper triangle of A is referenced and

overwritten (and whether the lower or upper triangle of B is refer-
enced) during the operation.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.

5.6. Front-ends 187

void FLA_Sylv(FLA_Trans transa, FLA_Trans transb, FLA_Obj isgn,

FLA_Obj A, FLA_Obj B, FLA_Obj C, FLA_Obj scale);

void FLASH_Sylv(FLA_Trans transa, FLA_Trans transb, FLA_Obj isgn,

FLA_Obj A, FLA_Obj B, FLA_Obj C, FLA_Obj scale);

Purpose: Solve one of the following triangular Sylvester equations (sylv):

AX ± XB = C
AX ± XBT = C
ATX ± XB = C
ATX ± XBT = C

where A and B are real upper triangular matrices and C is a real general matrix. If A,
B, and C are complex matrices, then the possible operations are:

AX ± XB = C
AX ± XBH = C
AHX ± XB = C
AHX ± XBH = C

where A and B are complex upper triangular matrices and C is a complex general matrix.
The operation references and then overwrites matrix C with the solution matrix X. The
isgn argument is a scalar integer object that indicates whether the ± sign between
terms is a plus or a minus. The scale argument is not referenced and set to 1.0 upon
completion.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• The isgn argument must be either FLA ONE or FLA MINUS ONE.

• The numerical datatype of scale must not FLA CONSTANT. Furthermore, the precision
of the datatype of scale must be equal to that of A, B, and C.

• A and B must be square.

• The order of A and the order of B must be equal to the the number of rows in C and
the number of columns in C, respectively.

• trans may not be FLA CONJ NO TRANSPOSE .

Int. Notes: FLA Sylv() expects A, B, and C to be flat matrix objects.

Imp. Notes: FLA Sylv() invokes one or more FLAME/C variants to induce a blocked algorithm with
subproblems performed by calling wrappers to external BLAS routines. FLASH Sylv()

uses multiple FLAME/C algorithmic variants to form an algorithm-by-blocks, which
breaks the sylv operation into subproblems expressed in terms of individual blocks of
A, B, and C and then invokes external BLAS routines to perform the computation
on these blocks. By default, the unblocked sylv subproblems are computed by internal
implementations. However, if the external-lapack-for-subproblems option is enabled
at configure-time, these subproblems are computed by external unblocked LAPACK
routines.

Arguments:

transa – Indicates whether the operation proceeds as if A were [conjugate]
transposed.

transb – Indicates whether the operation proceeds as if B were [conjugate]
transposed.

isgn – Indicates whether the terms of the Sylvester equation are added or
subtracted.

A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
C – An FLA Obj representing matrix C.
scale – Not referenced; set to 1.0 upon exit.

188 5. User-level Application Programming Interfaces

void FLA_Lyap(FLA_Trans trans, FLA_Obj isgn, FLA_Obj A, FLA_Obj C, FLA_Obj scale);

void FLASH_Lyap(FLA_Trans trans, FLA_Obj isgn, FLA_Obj A, FLA_Obj C, FLA_Obj scale);

Purpose: Solve one of the following triangular Lyapunov equations (lyap):

AX + XAT = ±C
ATX + XA = ±C

where A is upper triangular matrix and C is symmetric. If A and C are complex matrices,
then the possible operations are:

AX + XAH = ±C
AHX + XA = ±C

where A is upper triangular matrix and C is Hermitian. The operation references and
then overwrites the upper triangle of matrix C with the upper triangle of the solution
matrix X, which is also symmetric (or Hermitian). The trans argument determines
whether the equation is solved with AX (FLA NO TRANSPOSE) or AHX (FLA TRANSPOSE

or FLA CONJ TRANSPOSE). The isgn argument is a scalar integer object that indicates
whether the ± sign is a plus or a minus. The scale argument is used as workspace.

Constraints:
• The numerical datatypes of A and C must be identical and floating-point, and must

not be FLA CONSTANT.

• The isgn argument must be either FLA ONE or FLA MINUS ONE.

• The numerical datatype of scale must not FLA CONSTANT. Furthermore, the precision
of the datatype of scale must be equal to that of A and C.

• The dimensions of A and C must be conformal.

• A and C must be square.

• trans may not be FLA CONJ NO TRANSPOSE .

Int. Notes: FLA Lyap() expects A and C to be flat matrix objects.

Imp. Notes: FLA Lyap() invokes one or more FLAME/C variants to induce a blocked algo-
rithm with subproblems performed by calling wrappers to external BLAS routines.
FLASH Lyap() uses multiple FLAME/C algorithmic variants to form an algorithm-
by-blocks, which breaks the lyap operation into subproblems expressed in terms of
individual blocks of A and C and then invokes external BLAS routines to perform
the computation on these blocks. The unblocked lyap subproblems are computed
by internal implementations. (External LAPACK routines are not used, even when
external-lapack-for-subproblems option is enabled.)

Caveats: FLA Lyap() and FLASH Lyap() are currently only implemented for the case where trans

is FLA TRANSPOSE (or FLA CONJ TRANSPOSE).

Arguments:
trans – Indicates whether the operation proceeds as if the instance of A in the

term AX were [conjugate] transposed.

isgn – Indicates whether the Lyapunov equation is solved with C or −C.
A – An FLA Obj representing matrix A.
C – An FLA Obj representing matrix C.
scale – A scalar used as workspace.

5.6. Front-ends 189

FLA_Error FLA_Hevd(FLA_Evd_type jobz, FLA_Uplo uplo, FLA_Obj A, FLA_Obj l);

Purpose: Perform a Hermitian eigenvalue decomposition (hevd):

A → UΛUH

where Λ is a diagonal matrix whose elements contain the eigenvalues of A, and
the columns of U contain the eigenvectors of A. The jobz argument determines
whether only eigenvalues (FLA EVD WITHOUT VECTORS) or both eigenvalues and eigenvec-
tors (FLA EVD WITH VECTORS) are computed. The uplo argument determines whether A
is stored in the lower or upper triangle. Upon completion, the eigenvalues are stored to
the vector l in ascending order, and the eigenvectors U , if requested, overwrite matrix
A such that vector element lj contains the eigenvalue corresponding to the eigenvec-
tor stored in the jth column of U . If eigenvectors are not requested, then the triangle
specified by uplo is destroyed.

Returns: FLA Hevd() returns the total number of Francis steps performed by the underlying QR
algorithm.

Caveats: FLA Hevd() is currently only implemented for the case where jobz is
FLA EVD WITH VECTORS.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of l must be real and must not be FLA CONSTANT.

• The precision of the datatype of l must be equal to that of A.

• l must be a contiguously-stored vector of length n, where A is n× n.

Arguments:
jobz – Indicates whether only eigenvalues or both eigenvalues and eigenvec-

tors are computed.
uplo – Indicates whether the lower or upper triangle of A is read during the

operation.
A – An FLA Obj representing matrix A.
l – An FLA Obj representing vector l.

190 5. User-level Application Programming Interfaces

FLA_Error FLA_Svd(FLA_Svd_type jobu, FLA_Svd_type jobv, FLA_Obj A, FLA_Obj s,

FLA_Obj U, FLA_Obj V);

Purpose: Perform a singular value decomposition (svd):

A → UΣV H

where Σ is an m × n diagonal matrix whose elements contain the singular values of A,
U is an m ×m matrix whose columns contain the left singular vectors of A, and V is
an n × n matrix whose rows of V contain the right singular vectors of A. The jobu

and jobv arguments determine if (and how many of) the left and right singular vectors,
respectively, are computed and where they are stored. The jobu and jobv arguments
accept the following values:

• FLA SVD VECTORS ALL. For jobu: compute all m columns of U , storing the result
in U . For jobv: compute all n columns of V , storing the result in V .

• FLA SVD VECTORS MIN COPY. For jobu: compute the first min(m,n) columns of U
and store them in U . For jobv: compute the first min(m,n) columns of V and
store them in V .

• FLA SVD VECTORS MIN OVERWRITE. For jobu: compute the first min(m,n) columns
of U and store them in A. For jobv: compute the first min(m,n) columns
of V and store them in A. Note that jobu and jobv cannot both be
FLA SVD VECTORS MIN OVERWRITE.

• FLA SVD VECTORS NONE. For jobu: no columns of U are computed. For jobv: no
columns of V are computed.

Upon completion, the min(m,n) singular values of A are stored to s, sorted in
descending order and singular vectors, if computed, are stored to either A or U
and V , depending on the values of jobu and jobv. If neither jobu nor jobv is
FLA SVD VECTORS MIN OVERWRITE, then A is destroyed.

Returns: FLA Svd() returns the total number of Francis steps performed by the underlying QR
algorithm.

Caveats: FLA Svd() is currently only implemented for the case where jobu and jobv are both
FLA SVD VECTORS ALL.

Constraints:
• The numerical datatypes of A, U , and V must be identical and floating-point, and

must not be FLA CONSTANT.

• The numerical datatype of s must be real and must not be FLA CONSTANT.

• The precision of the datatype of s must be equal to that of A.

• e must be a contiguously-stored vector of length min(m,n), where A is m× n.

• U and V must be square.

• The order of U and the order of V must be equal to the the number of rows in A and
the number of columns in A, respectively.

Arguments:
jobu – Indicates whether the left singular vectors are computed, how many

are computed, and where they are stored.
jobv – Indicates whether the right singular vectors are computed, how many

are computed, and where they are stored.
A – An FLA Obj representing matrix A.
s – An FLA Obj representing vector s.
U – An FLA Obj representing matrix U .
V – An FLA Obj representing matrix V .

5.6. Front-ends 191

5.6.3 Utility functions

void FLA_Apply_diag_matrix(FLA_Side side, FLA_Conj conj, FLA_Obj x, FLA_Obj A);

Purpose: Apply a diagonal matrix to a general matrix, where the diagonal is stored in a vector
(apdiagmv):

A := DA

A := D̄A

A := AD

A := AD̄

where D is a diagonal matrix whose diagonal is stored in vector x and A is a general
matrix. The side argument indicates whether the diagonal matrix D is multiplied on
the left or the right side of A. The conj argument allows the computation to proceed as
if D (ie: the entries stored in x) were conjugated.

Constraints:
• The numerical datatypes of x and A must be floating-point and must not be
FLA CONSTANT.

• The precision of the datatype of x must be equal to that of A.

• If side equals FLA LEFT, then the length of x and the number of rows in A must be
equal; otherwise, if side equals FLA RIGHT, then the length of x must be equal to the
number of columns in A.

Arguments:
side – Indicates whether the operation proceeds as if the diagonal matrix D

is applied from the left or the right.
conj – Indicates whether the operation proceeds as if the diagonal matrix D

were conjugated.
x – An FLA Obj representing vector x.
A – An FLA Obj representing matrix A.

void FLA_Shift_pivots_to(FLA_Pivot_type ptype, FLA_Obj p);

Purpose: Convert a pivot vector from libflame pivot indexing to LAPACK indexing, or vice
versa. If p currently contains libflame pivots, setting ptype to FLA LAPACK PIVOTS will
update the contents of p to reflect the pivoting style found in LAPACK. Likewise, if
p currently contains LAPACK pivots, setting ptype to FLA NATIVE PIVOTS will update
the contents of p to reflect the pivoting style used natively within libflame .

Notes: The user should always be aware of the current state of the indexing style used by p.
There is nothing stopping the user from applying the shift in the wrong direction. For
example, attempting to shift the pivot format from libflame to LAPACK when the
vector already uses LAPACK pivot indexing will result in an undefined format. Please
see the description for FLA LU piv() in Section 5.6.2 for details on the differences between
LAPACK-style pivot vectors and libflame pivot vectors.

Constraints:
• The numerical datatype of p must be integer, and must not be FLA CONSTANT.

Arguments:

ptype – Indicates the desired pivot indexing.
p – An FLA Obj representing vector p.

192 5. User-level Application Programming Interfaces

void FLA_Form_perm_matrix(FLA_Obj p, FLA_Obj A);

Purpose: Explicitly form a permutation matrix P from a pivot vector p and then store the contents
of P into A.

Notes: This function assumes that p uses native libflame pivots. Please see the description
for FLA LU piv() in Section 5.6.2 for details on the differences between LAPACK-style
pivot vectors and libflame pivot vectors.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• The numerical datatype of p must be integer, and must not be FLA CONSTANT.

• A must be square.

• The number of rows in p must be equal to the order of A.

Imp. Notes: This function is currently implemented as:
FLA Obj set to identity(A);

FLA Apply pivots(FLA LEFT, FLA NO TRANSPOSE, p, A);

Arguments:

p – An FLA Obj representing vector p.
A – An FLA Obj representing matrix A.

5.6. Front-ends 193

void FLA_Househ2_UT(FLA_Side side, FLA_Obj chi_1, FLA_Obj x2, FLA_Obj tau);

Purpose: Compute the UT Householder transform, otherwise known as the “UT transform”,

H =

(
I − 1

τ

(
1
u2

)(
1
u2

)H)

by computing τ and u2 such that one of the following equations is satisfied:

H

(
χ1

x2

)
=

(
α
0

)
(
χ1 xT2

)
H =

(
α 0

)
where

α = −‖x‖2χ1

|χ1|

x =

(
χ1

x2

)
.

The side parameter determines whether the the transform generated by the function
annihilates the elements below χ1 in x (when applied from the left) or the elements
to the right of χ1 in xT (when applied from the right). On input chi 1 and x2 are
assumed to hold χ1 and x2 (or xT2), respectively. Upon completion, chi 1, x2, and tau

are overwritten by α, u2 (or uT2), and τ , respectively.

Notes: When side is FLA LEFT, the function computes u2 as

u2 =
x2

χ1 − α

and when side is FLA RIGHT, the function computes u2 as

u2 =
x̄2

χ̄1 − ᾱ

In either case, τ is subsequently computed as

τ =
1 + uH2 u2

2

Constraints:
• The numerical datatypes of χ1, x2, and τ must be identical and floating-point, and

must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *nrm2().

Arguments:

chi 1 – An FLA Obj representing scalar χ1.

x2 – An FLA Obj representing vector x2 or xT2 .

tau – An FLA Obj representing scalar τ .

194 5. User-level Application Programming Interfaces

void FLA_Househ2s_UT(FLA_Side side, FLA_Obj chi_1, FLA_Obj x2,

FLA_Obj alpha, FLA_Obj gamma, FLA_Obj tau);

Purpose: Compute scalars associated with the UT Householder transform, otherwise known as the
“UT transform”,

H =

(
I − 1

τ

(
1
u2

)(
1
u2

)H)

On input chi 1 and x2 are assumed to hold χ1 and x2 (or xT2), respectively. Upon
completion, alpha, gamma, and tau are overwritten by α, χ1 − α, and τ , respectively.
Objects chi 1 and x2 are only referenced and not stored.

Notes: The routine does not need a side parameter. The difference in output between the
FLA LEFT and FLA RIGHT cases comes down to a conjugation of u2, and thus the same
scalars may be computed regardless of whether the transform is being applied from the
left or the right.

More Info: This function is similar to that of FLA Househ2 UT(). Please see the description for
FLA Househ2 UT() further details.

Constraints:
• The numerical datatypes of χ1, x2, and τ must be identical and floating-point, and

must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *nrm2().

Arguments:

chi 1 – An FLA Obj representing scalar χ1.

x2 – An FLA Obj representing vector x2 or xT2 .

alpha – An FLA Obj representing scalar α.
gamma – An FLA Obj representing scalar χ1 − α.
tau – An FLA Obj representing scalar τ .

5.6. Front-ends 195

void FLA_Househ3UD_UT(FLA_Obj chi_0, FLA_Obj x1, FLA_Obj y2, FLA_Obj tau);

Purpose: Compute the up-and-downdating UT Householder transform, otherwise known as the
“up-and-downdating UT transform”,

H =


 1 0 0

0 ImC
0

0 0 ImD

− 1

τ

 1 0 0
0 ImC

0
0 0 −ImD

 1
u1
v2

 1
u1
v2

H


by computing τ , u1, and v2 such that the following equation is satisfied:

H

 χ0

x1
y2

 =

 α
0
0


where

α = −λχ0

|χ0|

λ =
√
χ̄0χ0 + xH1 x1 − yH2 y2.

On input chi 0, x1, and y2 are assumed to hold χ0, x1, and y2, respectively, and upon
completion they are overwritten by α, u1, and v2, respectively.

Notes: The function computes τ , u1, and v2 as:

τ =
1 + uH1 u1 − vH2 v2

2

u1 =
x1

χ0 − α
v2 = − y2

χ0 − α

Constraints:
• The numerical datatypes of χ0, x1, y2, and τ must be identical and floating-point, and

must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *nrm2().

Arguments:

chi 0 – An FLA Obj representing scalar χ0.
x1 – An FLA Obj representing vector x1.
y2 – An FLA Obj representing vector y2.
tau – An FLA Obj representing scalar τ .

196 5. User-level Application Programming Interfaces

void FLA_Accum_T_UT(FLA_Direct direct, FLA_Store storev,

FLA_Obj V, FLA_Obj t, FLA_Obj T);

Purpose: Compute one or more triangular factors Tj of a block Householder transformation Hj

from a set of Householder reflectors, which were computed via the UT transform. The
Householder reflectors are given via the Householder vectors stored in the strictly lower
or strictly upper triangle of the m×n matrix V and the τ scalar factors stored in vector
t of length k = min(m,n). The triangular factors Tj are stored horizontally within a
b× k matrix T as:

T =
(
T0 T1 · · · Tp−1

)
where p = dk/be. All factors Tj are b × b, except Tp−1 which may be smaller if the
remainder of k/b is nonzero.

Notes: Each reflector is defined as H(i) = I− 1
τ vv

H , where τ is a scalar stored at the ith element
of vector t and and v is a vector stored in matrix V . If direct is FLA FORWARD, then
H is the forward product of k Householder reflectors, H(0)H(1) · · ·H(k − 1), and T is
upper triangular upon completion. If direct is FLA BACKWARD, then H is the backward
product of k Householder reflectors, H(k − 1) · · ·H(1)H(0), and T is lower triangular
upon completion. If storev is FLA COLUMNWISE , the vector which defines reflector H(i)
is assumed to be stored in the ith column of V , and H = I −V T−1V H , where the order
of H is equal to the number of rows in V . If storev is FLA ROWWISE, the vector which
defines reflector H(i) is assumed to be stored in the ith row of V , and H = I−V HT−1V ,
where the order of H is equal to the number of columns in V . The dimensions and storage
layout of V depend on the values of direct and storev, which should be set according
to how V was filled. The following example, with k = 3 Householder reflectors and H of
order n = 5, illustrates the possible storage schemes for matrix V .

storev

FLA COLUMNWISE FLA ROWWISE

d
i
r
e
c
t

F
L
A
F
O
R
W
A
R
D


1
ν0 1
ν0 ν1 1
ν0 ν1 ν2
ν0 ν1 ν2


1 ν0 ν0 ν0 ν0

1 ν1 ν1 ν1
1 ν2 ν2



F
L
A
B
A
C
K
W
A
R
D 

ν0 ν1 ν2
ν0 ν1 ν2
1 ν1 ν2

1 ν2
1


ν0 ν0 1
ν1 ν1 ν1 1
ν2 ν2 ν2 ν2 1


Here, elements νj for some constant j all belong to the same vector v that defines the
Householder reflector H(i). Note that the unit diagonal elements are not stored, and the
rest of the matrix is not referenced.

Notes: This function should only be used with matrices V and vectors t that were filled by other
UT transform operations, such as FLA QR UT() and FLA QR UT recover tau().

Constraints:
• The numerical datatypes of V , t, and T must be identical and floating-point, and

must not be FLA CONSTANT.

• The length of t and the width of T must be min(m,n) where V is m× n.

Int. Notes: Since FLA QR UT() and FLA LQ UT() provide T upon return, this routine is rarely needed.
However, there may be occasions when the user wishes to save the τ values of T to t
(via FLA QR UT recover tau()), discard the matrix T , and then subsequently rebuild T
from t. This routine facilitates the final step of such a process.

Caveats: FLA Accum T UT() is currently only implemented for the two cases where direct is
FLA FORWARD.

Arguments:
direct – Indicates whether H is formed from the forward or backward product

of its constituent Householder reflectors.
storev – Indicates whether the vectors stored within V are stored column-wise

below the diagonal or row-wise above the diagonal.
V – An FLA Obj representing matrix V .
t – An FLA Obj representing vector t.
T – An FLA Obj representing matrix T .

5.6. Front-ends 197

void FLA_Apply_H2_UT(FLA_Side side, FLA_Obj tau, FLA_Obj u2, FLA_Obj a1, FLA_Obj A2);

Purpose: Apply a single UT Householder transformation, H, to a row vector aT1 and a matrix A2

from the left, (
aT1
A2

)
:= H

(
aT1
A2

)
or to a column vector a1 and a matrix A2 from the right,(

a1 A2

)
:=

(
a1 A2

)
H

where H is determined by the scalar τ and vector u2 computed by FLA Househ2 UT().
The side argument indicates whether the transform is applied from the left or the
right. Note that a1 and A2 are typically either vertically (if applying from the left) or
horizontally (if applying from the right) adjacent views into the same matrix object,
though this is not a requirement.

Constraints:
• The numerical datatypes of τ , u2, a1, and A2 must be identical and floating-point,

and must not be FLA CONSTANT.

• If side equals FLA LEFT, then the length of u2 and the number of rows in A2 must
be equal; otherwise, if side equals FLA RIGHT, then the length of u2 must be equal to
the number of columns in A2.

• If side equals FLA LEFT, then the length of aT1 and the number of columns in A2 must
be equal; otherwise, if side equals FLA RIGHT, then the length of a1 must be equal to
the number of rows in A2.

Arguments:
side – Indicates whether the Householder transformation is applied from the

left or the right.
tau – An FLA Obj representing scalar τ .
u2 – An FLA Obj representing vector u2.
a1 – An FLA Obj representing vector a1.
A2 – An FLA Obj representing matrix A2.

198 5. User-level Application Programming Interfaces

void FLA_QR_UT_create_T(FLA_Obj A, FLA_Obj* T);

Purpose: Given an m×n matrix A upon which the user intends to perform a QR factorization via
the UT transform, create a b×k matrix T where b is chosen to be a reasonable blocksize
and k = min(m,n). This matrix T is required as input to FLA QR UT() so that the upper
triangular factors of the block Householder transformations may be accumulated during
each iteration of the factorization algorithm. Once created, T may be freed normally via
FLA Obj free(). This routine is provided in case the user is not comfortable choosing
the length of T , and thus implicitly setting the algorithmic blocksize of FLA QR UT().

Notes: Matrix T is created so that its numerical datatype and storage format (row- or column-
major) is the same as that of A.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Arguments:

A – An FLA Obj representing matrix A.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, k, and the datatype

of A.

void FLA_QR_UT_recover_tau(FLA_Obj T, FLA_Obj t);

Purpose: Subsequent to a QR factorization via the UT transform, recover the τ values along the
diagonals of the upper triangular factors of the block Householder submatrices of T and
store them to a vector t.

Notes: This routine is rarely needed. However, there may be occasions when the user wishes to
save the τ values of T to t, discard the matrix T , and then subsequently rebuild T from
t (via FLA Accum T UT()). This routine facilitates the first step of such a process.

Constraints:
• The numerical datatypes of T and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to dim(t).

Arguments:

T – An FLA Obj representing matrix T .
t – An FLA Obj representing vector t.

5.6. Front-ends 199

void FLA_QR_UT_form_Q(FLA_Obj A, FLA_Obj T, FLA_Obj Q);

Purpose: Form a unitary matrix Q from the Householder vectors stored below the diagonal of A
and the block Householder submatrices of T :

Q := H0H1 · · ·Hk−1

where Hi is the Householder transform associated with the Householder vector stored
below the diagonal in the ith column of A.

Imp. Notes: This operation is implemented such the minimum number of computations are performed
in forming Q.

Constraints:
• The numerical datatypes of A, T , and Q must be identical and floating-point, and

must not be FLA CONSTANT.

• The width of T must be equal to the width of A.

• The dimension of Q must be equal to the number of rows in A.

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .
Q – An FLA Obj representing matrix Q.

void FLA_LQ_UT_create_T(FLA_Obj A, FLA_Obj* T);

Purpose: Given an m×n matrix A upon which the user intends to perform a LQ factorization via
the UT transform, create a b×k matrix T where b is chosen to be a reasonable blocksize
and k = min(m,n). This matrix T is required as input to FLA LQ UT() so that the upper
triangular factors of the block Householder transformations may be accumulated during
each iteration of the factorization algorithm. Once created, T may be freed normally via
FLA Obj free(). This routine is provided in case the user is not comfortable choosing
the length of T , and thus implicitly setting the algorithmic blocksize of FLA LQ UT().

Notes: Matrix T is created so that its numerical datatype and storage format (row- or column-
major) is the same as that of A.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Arguments:

A – An FLA Obj representing matrix A.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, n, and the datatype

of A.

200 5. User-level Application Programming Interfaces

void FLA_LQ_UT_recover_tau(FLA_Obj T, FLA_Obj t);

Purpose: Subsequent to an LQ factorization via the UT transform, recover the τ values along the
diagonals of the upper triangular factors of the block Householder submatrices of T and
store them to a vector t.

Notes: This routine is rarely needed. However, there may be occasions when the user wishes to
save the τ values of T to t, discard the matrix T , and then subsequently rebuild T from
t (via FLA Accum T UT()). This routine facilitates the first step of such a process.

Constraints:
• The numerical datatypes of T and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to dim(t).

Arguments:

T – An FLA Obj representing matrix T .
t – An FLA Obj representing vector t.

void FLA_UDdate_UT_create_T(FLA_Obj R, FLA_Obj* T);

Purpose: Given an n × n matrix R that the user intends to up-and-downdate via up-and-
downdating UT transforms, create a b×n matrix T where b is chosen to be a reasonable
blocksize. This matrix T is required as input to FLA UDdate UT() so that the upper
triangular factors of the block Householder transformations may be accumulated during
each iteration of the factorization algorithm. Once created, T may be freed normally via
FLA Obj free(). This routine is provided in case the user is not comfortable choosing
the length of T , and thus implicitly setting the algorithmic blocksize of FLA UDdate UT().

Notes: Matrix T is created so that its numerical datatype and storage format (row- or column-
major) is the same as that of R.

Constraints:
• The numerical datatype of R must be floating-point, and must not be FLA CONSTANT.

Arguments:

R – An FLA Obj representing matrix R.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, n, and the datatype

of A.

5.6. Front-ends 201

void FLA_LQ_UT_form_Q(FLA_Obj A, FLA_Obj T, FLA_Obj Q);

Purpose: Form a unitary matrix Q from the Householder vectors stored above the diagonal of A
and the block Householder submatrices of T :

Q := Hk−1 · · ·H1H0

where Hi is the Householder transform associated with the Householder vector stored
above the diagonal in the ith row of A.

Imp. Notes: This operation is implemented such the minimum number of computations are performed
in forming Q.

Constraints:
• The numerical datatypes of A, T , and Q must be identical and floating-point, and

must not be FLA CONSTANT.

• The width of T must be equal to the length of A.

• The dimension of Q must be equal to the number of columns in A.

Arguments:

A – An FLA Obj representing matrix A.
T – An FLA Obj representing matrix T .
Q – An FLA Obj representing matrix Q.

void FLA_Hess_UT_create_T(FLA_Obj A, FLA_Obj* T);

Purpose: Given an n× n matrix A upon which the user intends to perform a reduction to upper
Hessenberg form, create a b×n matrix T where b is chosen to be a reasonable blocksize.
This matrix T is required as input to FLA Hess UT() so that the upper triangular factors
of the block Householder transformations may be accumulated during each iteration of
the factorization algorithm. Once created, T may be freed normally via FLA Obj free().
This routine is provided in case the user is not comfortable choosing the length of T ,
and thus implicitly setting the algorithmic blocksize of FLA Hess UT().

Notes: Matrix T is created so that its numerical datatype and storage format (row- or column-
major) is the same as that of A.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Arguments:

A – An FLA Obj representing matrix A.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, n, and the datatype

of A.

202 5. User-level Application Programming Interfaces

void FLA_Hess_UT_recover_tau(FLA_Obj T, FLA_Obj t);

Purpose: Subsequent to a reduction to upper Hessenberg form via the UT transform, recover the
τ values along the diagonals of the upper triangular factors of the block Householder
submatrices of T and store them to a vector t.

Notes: This routine is rarely needed. However, there may be occasions when the user wishes to
save the τ values of T to t, discard the matrix T , and then subsequently rebuild T from
t (via FLA Accum T UT()). This routine facilitates the first step of such a process.

Constraints:
• The numerical datatypes of T and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to dim(t).

Arguments:

T – An FLA Obj representing matrix T .
t – An FLA Obj representing vector t.

void FLA_Tridiag_UT_create_T(FLA_Obj A, FLA_Obj* T);

Purpose: Given an n×nmatrix A upon which the user intends to perform a reduction to tridiagonal
form via the UT transform, create a b×n matrix T where b is chosen to be a reasonable
blocksize. This matrix T is required as input to FLA Tridiag UT() so that the upper
triangular factors of the block Householder transformations may be accumulated during
each iteration of the reduction algorithm. Once created, T may be freed normally via
FLA Obj free(). This routine is provided in case the user is not comfortable choosing the
length of T , and thus implicitly setting the algorithmic blocksize of FLA Tridiag UT().

Notes: Matrix T is created so that its numerical datatype and storage format (row- or column-
major) is the same as that of A.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Arguments:

A – An FLA Obj representing matrix A.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, n, and the datatype

of A.

5.6. Front-ends 203

void FLA_Tridiag_UT_recover_tau(FLA_Obj T, FLA_Obj t);

Purpose: Subsequent to a reduction to tridiagonal form via the UT transform, recover the τ values
along the diagonals of the upper triangular factors of the block Householder submatrices
of T and store them to a vector t.

Notes: This routine is rarely needed. However, there may be occasions when the user wishes to
save the τ values of T to t, discard the matrix T , and then subsequently rebuild T from
t (via FLA Accum T UT()). This routine facilitates the first step of such a process.

Constraints:
• The numerical datatypes of T and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The width of T must be equal to dim(t).

Arguments:

T – An FLA Obj representing matrix T .
t – An FLA Obj representing vector t.

void FLA_Tridiag_UT_realify(FLA_Uplo uplo, FLA_Obj A, FLA_Obj r);

Purpose: Subsequent to a reduction to tridiagonal form via the UT transform, reduce matrix A
to real tridiagonal form and store the scalars used in the reduction in vector r. If the
matrix datatype is real to begin with, then A is left unchanged and the elements of r are
set to one.

Constraints:
• The numerical datatypes of A and r must be identical and floating-point, and must

not be FLA CONSTANT.

• A must be square.

• The length and width of A must be equal to dim(r).

Arguments:
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
A – An FLA Obj representing matrix A.
r – An FLA Obj representing vector r.

204 5. User-level Application Programming Interfaces

void FLA_Bidiag_UT_create_T(FLA_Obj A, FLA_Obj* TU, FLA_Obj* TV);

Purpose: Given anm×nmatrixA upon which the user intends to perform a reduction to bidiagonal
form via the UT transform, create b × k matrices TU and TV where b is chosen to be
a reasonable blocksize and k = min(m,n). These matrices TU and TV are required as
input to FLA Bidiag UT() so that the upper triangular factors of the block Householder
transformations may be accumulated during each iteration of the reduction algorithm.
Once created, TU and TV may be freed normally via FLA Obj free(). This routine is
provided in case the user is not comfortable choosing the length of TU and TV , and thus
implicitly setting the algorithmic blocksize of FLA Bidiag UT().

Notes: Matrices TU and TV are created so that their numerical datatypes and storage formats
(row- or column-major) are the same as that of A.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

Arguments:

A – An FLA Obj representing matrix A.
TU

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, k, and the datatype

of A.
TV

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj parameterized by b, k, and the datatype

of A.

void FLA_Bidiag_UT_recover_tau(FLA_Obj TU, FLA_Obj TV, FLA_Obj tU, FLA_Obj tV);

Purpose: Subsequent to a reduction to bidiagonal form via the UT transform, recover the τ values
along the diagonals of the upper triangular factors of the block Householder submatrices
of TU and TV and store them to vectors tU and tV , respectively.

Notes: This routine is rarely needed. However, there may be occasions when the user wishes to
save the τ values of TU and TV to tU and tV , discard the matrices TU and TV , and then
subsequently rebuild TU and TV from tU and tV (via FLA Accum T UT()). This routine
facilitates the first step of such a process.

Constraints:
• The numerical datatypes of TU , TV , tU , and tV must be identical and floating-point,

and must not be FLA CONSTANT.

• The width of TU and must be equal dim(tU).

• The width of TV and must be equal dim(tV).

• dim(tU) must equal dim(tV).

Arguments:

TU – An FLA Obj representing matrix TU .
TV – An FLA Obj representing matrix TV .
tU – An FLA Obj representing vector tU .
tV – An FLA Obj representing vector tV .

5.6. Front-ends 205

void FLA_Bidiag_UT_realify(FLA_Obj A, FLA_Obj rL, FLA_Obj rR);

Purpose: Subsequent to a reduction to bidiagonal form via the UT transform, reduce matrix A to
real bidiagonal form and store the left and right scalars used in the reduction in vectors
rL and rR, respectively. If the matrix datatype is real to begin with, then A is left
unchanged and the elements of rL and rR are set to one.

Constraints:
• The numerical datatypes of A, rL, and rR must be identical and floating-point, and

must not be FLA CONSTANT.

• The vector lengths of rL and rR must be min(m,n) where A is m× n.

Arguments:

A – An FLA Obj representing matrix A.
rL – An FLA Obj representing vector rL.
rR – An FLA Obj representing vector rR.

void FLA_Apply_Q_UT_create_workspace(FLA_Obj T, FLA_Obj B, FLA_Obj* W);

void FLASH_Apply_Q_UT_create_workspace(FLA_Obj T, FLA_Obj B, FLA_Obj* W);

Purpose: Create a flat (or hierarchical) workspace matrix W needed when applying Q or QH

to B via FLA Apply Q UT() (or FLASH Apply Q UT()). Once created, W may be freed
normally via FLA Obj free() (or FLASH Obj free()).

Notes: This function is provided as a convenience to users of FLA Apply Q UT() and
FLASH Apply Q UT() so they do not need to worry about creating the workspace ma-
trix object W with the correct properties.

Constraints:
• The numerical datatypes of T and B must be identical and floating-point, and must

not be FLA CONSTANT.

• The pointer argument W must not be NULL.

Arguments:

T – An FLA Obj representing matrix T .
B – An FLA Obj representing matrix B.
W

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj to represent matrix W .

206 5. User-level Application Programming Interfaces

void FLA_Apply_QUD_UT_create_workspace(FLA_Obj T, FLA_Obj B, FLA_Obj* W);

Purpose: Create a flat workspace matrix W needed when applying QH to B via
FLA Apply QUD UT(). Once created, W may be freed normally via FLA Obj free().

Notes: This function is provided as a convenience to users of FLA Apply QUD UT() so they do not
need to worry about creating the workspace matrix object W with the correct properties.

Constraints:
• The numerical datatypes of T and B must be identical and floating-point, and must

not be FLA CONSTANT.

• The pointer argument W must not be NULL.

Arguments:

T – An FLA Obj representing matrix T .
B – An FLA Obj representing matrix B.
W

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new FLA Obj to represent matrix W .

5.6. Front-ends 207

void FLASH_LU_incpiv_create_hier_matrices(FLA_Obj A_flat, dim_t depth, dim_t* b_flash,

dim_t b_alg, FLA_Obj* A, FLA_Obj* p,

FLA_Obj* L);

Purpose: Create a hierarchical matrix A conformal to a flat matrix Aflat and then copy the
contents of Aflat into A. The hierarchy of A is specified by the depth and square
blocksize values in depth and b flash, respectively. Also, create hierarchical matrix
objects p and L with proper datatypes, dimensions, and hierarchies relative to A so that
the objects may be used together with FLASH LU incpiv() and FLASH FS incpiv(). If
b alg is greater than zero, it is used as the the width of the storage blocks in L, which
determines the algorithmic blocksize used in FLASH LU incpiv(). If b alg is zero, the
width of the storage blocks in L is set to a reasonable default value. Once created, A, p,
and L may be freed normally via FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH LU incpiv() so they do not
need to worry about creating each auxiliary matrix object with the correct properties.

Constraints:
• The numerical datatype of Aflat must be floating-point, and must not be
FLA CONSTANT.

• Aflat must be square.

• The pointer arguments b flash, A, p, and L must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

A flat – An FLA Obj representing matrix Aflat.

depth – The number of levels to create in the matrix hierarchies of A, p, and
L.

b flash – A pointer to an array of depth values to be used as blocksizes in
creating the matrix hierarchies of A, p, and L.

b alg – The value to be used as the width of the storage blocks in L (ie: the
number of columns in the leaves of L), which determines the algorith-
mic blocksize used in FLASH LU incpiv() and FLASH FS incpiv(), or
zero if the user wishes to use a default value.

A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix A, con-

formal to and initialized with the contents of Aflat.
p

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent vector p.

L

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix L.

208 5. User-level Application Programming Interfaces

void FLASH_QR_UT_create_hier_matrices(FLA_Obj A_flat, dim_t depth, dim_t* b_flash,

FLA_Obj* A, FLA_Obj* TW);

Purpose: Create a hierarchical matrix A conformal to a flat matrix Aflat and then copy the
contents of Aflat into A. The hierarchy of A is specified by the depth and square
blocksize values in depth and b flash, respectively. Also, create hierarchical matrix
object TW with proper datatype, dimensions, and hierarchy relative to A so that the
objects may be used together with FLASH QR UT() and FLASH Apply Q UT(). Unlike
with FLASH QR UT inc create hier matrices(), the algorithmic blocksize specified by
b alg must equal the storage blocksize, b flash. Once created, A and TW may be freed
normally via FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH QR UT() so they do not need
to worry about creating the auxiliary TW matrix object with the correct properties.

Constraints:
• The numerical datatype of Aflat must be floating-point, and must not be
FLA CONSTANT.

• Aflat must be square.

• The pointer arguments b flash, A, and TW must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

A flat – An FLA Obj representing matrix Aflat.
depth – The number of levels to create in the matrix hierarchies of A and TW .
b flash – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchies of A and TW .
A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix A, con-

formal to and initialized with the contents of Aflat.
TW

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix TW .

5.6. Front-ends 209

void FLASH_QR_UT_inc_create_hier_matrices(FLA_Obj A_flat, dim_t depth, dim_t* b_flash,

dim_t b_alg, FLA_Obj* A, FLA_Obj* TW);

Purpose: Create a hierarchical matrix A conformal to a flat matrix Aflat and then copy the
contents of Aflat into A. The hierarchy of A is specified by the depth and square
blocksize values in depth and b flash, respectively. Also, create hierarchical matrix
object TW with proper datatype, dimensions, and hierarchy relative to A so that the
objects may be used together with FLASH QR UT inc() and FLASH Apply Q UT inc(). If
b alg is greater than zero, it is used as the the length of the storage blocks in TW , which
determines the algorithmic blocksize used in FLASH QR UT inc(). If b alg is zero, the
length of the storage blocks in TW is set to a reasonable default value. Once created, A
and TW may be freed normally via FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH QR UT inc() so they do not
need to worry about creating the auxiliary TW matrix object with the correct properties.

Constraints:
• The numerical datatype of Aflat must be floating-point, and must not be
FLA CONSTANT.

• Aflat must be square.

• The pointer arguments b flash, A, and TW must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

A flat – An FLA Obj representing matrix Aflat.
depth – The number of levels to create in the matrix hierarchies of A and TW .
b flash – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchies of A and TW .

b alg – The value to be used as the length of the storage blocks in TW (ie: the
number of rows in the leaves of TW), which determines the algorithmic
blocksize used in FLASH QR UT inc() and FLASH Apply Q UT inc(), or
zero if the user wishes to use a default value.

A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix A, con-

formal to and initialized with the contents of Aflat.
TW

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix TW .

210 5. User-level Application Programming Interfaces

void FLASH_LQ_UT_create_hier_matrices(FLA_Obj A_flat, dim_t depth, dim_t* b_flash,

FLA_Obj* A, FLA_Obj* TW);

Purpose: Create a hierarchical matrix A conformal to a flat matrix Aflat and then copy the
contents of Aflat into A. The hierarchy of A is specified by the depth and square
blocksize values in depth and b flash, respectively. Also, create hierarchical matrix
object TW with proper datatype, dimensions, and hierarchy relative to A so that the
objects may be used together with FLASH LQ UT() and FLASH Apply Q UT().

Notes: This function is provided as a convenience to users of FLASH LQ UT() so they do not need
to worry about creating the auxiliary TW matrix object with the correct properties.

Constraints:
• The numerical datatype of Aflat must be floating-point, and must not be
FLA CONSTANT.

• Aflat must be square.

• The pointer arguments b flash, A, and TW must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

A flat – An FLA Obj representing matrix Aflat.
depth – The number of levels to create in the matrix hierarchies of A and TW .
b flash – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchies of A and TW .
A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix A, con-

formal to and initialized with the contents of Aflat.
TW

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix TW .

5.6. Front-ends 211

void FLASH_CAQR_UT_inc_create_hier_matrices(dim_t p, FLA_Obj A_flat, dim_t depth,

dim_t* b_flash, dim_t b_alg, FLA_Obj* A,

FLA_Obj* ATW, FLA_Obj* R, FLA_Obj* RTW);

Purpose: Create hierarchical matrices A and R conformal to a flat matrix Aflat and then copy the
contents of Aflat into A. The hierarchy of A is specified by the depth and square blocksize
values in depth and b flash, respectively. Also, create hierarchical matrix objects ATW
and RTW with proper datatype, dimensions, and hierarchy relative to A and R so that
the objects may be used together with FLASH CAQR UT inc().If b alg is greater than zero,
it is used as the the length of the storage blocks in ATW and RTW , which determines
the algorithmic blocksize used in FLASH CAQR UT inc(). If b alg is zero, the length
of the storage blocks in ATW and RTW are set to a reasonable default value. Once
created, A, ATW , R, and RTW may be freed normally via FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH CAQR UT inc() so they do
not need to worry about creating the auxiliary ATW , R, RTW matrix object with the
correct properties.

Constraints:
• The numerical datatype of Aflat must be floating-point, and must not be
FLA CONSTANT.

• The pointer arguments b flash, A, ATW, R, and RTW must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

A flat – An FLA Obj representing matrix Aflat.

depth – The number of levels to create in the matrix hierarchies of A, ATW ,
R, and RTW .

b flash – A pointer to an array of depth values to be used as blocksizes in
creating the matrix hierarchies of A, ATW , R, and RTW .

b alg – The value to be used as the length of the storage blocks in ATW and
RTW (ie: the number of rows in the leaves of their hierachies), which
determines the algorithmic blocksize used in FLASH CAQR UT inc(), or
zero if the user wishes to use a default value.

A

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix A, con-

formal to and initialized with the contents of Aflat.
ATW

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix ATW .

R

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix R.

RTW

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix RTW .

212 5. User-level Application Programming Interfaces

void FLASH_UDdate_UT_inc_create_hier_matrices(FLA_Obj R_flat, FLA_Obj C_flat, FLA_Obj D_flat,

dim_t depth, dim_t* b_flash, dim_t b_alg,

FLA_Obj* R, FLA_Obj* C, FLA_Obj* D,

FLA_Obj* T, FLA_Obj* W);

Purpose: Create hierarchical matrices R, C, and D conformal to a flat matrices Rflat, Cflat, and
Dflat, respectively, then copy the contents of the former into the latter. The hierarchies
of R, C, and D are specified by the depth and square blocksize values in depth and
b flash, respectively. Also, create hierarchical matrix objects T and W with proper
datatype, dimensions, and hierarchy relative to R, C, and D so that the objects may be
used together with FLASH UDdate UT inc() and FLASH Apply QUD UT inc(). If b alg is
greater than zero, it is used as the the length of the storage blocks in T and W , which
determines the algorithmic blocksize used in FLASH UDdate UT inc(). If b alg is zero,
the length of the storage blocks in T and W are set to a reasonable default value. Once
created, R, C, D, T and W may be freed normally via FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH UDdate UT inc() so they
do not need to worry about creating the auxiliary T and W matrix objects with the
correct properties.

Constraints:
• The numerical datatypes of Rflat, Cflat, and Dflat must be identical and floating-

point, and must not be FLA CONSTANT.

• The pointer arguments b flash, R, C, D, T, and W must not be NULL.

• Each of the first depth values in b flash must be greater than zero.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

R flat – An FLA Obj representing matrix Rflat.
C flat – An FLA Obj representing matrix Cflat.
D flat – An FLA Obj representing matrix Dflat.
depth – The number of levels to create in the matrix hierarchies of A and TW .
b flash – A pointer to an array of depth values to be used as blocksizes in

creating the matrix hierarchies of A and TW .

b alg – The value to be used as the length of the storage blocks in TW (ie: the
number of rows in the leaves of TW), which determines the algorithmic
blocksize used in FLASH QR UT inc() and FLASH Apply Q UT inc(), or
zero if the user wishes to use a default value.

R

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix R, con-

formal to and initialized with the contents of Rflat.
C

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix C, con-

formal to and initialized with the contents of Cflat.
D

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix D, con-

formal to and initialized with the contents of Dflat.
T

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix T .

W

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix W .

5.7. External wrappers 213

void FLASH_Apply_Q_UT_inc_create_workspace(FLA_Obj TW, FLA_Obj B, FLA_Obj* W);

Purpose: Create a hierarchical workspace matrix W needed when applying Q or QH to
B via FLASH Apply Q UT inc(). Once created, W may be freed normally via
FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH Apply Q UT inc() so they
do not need to worry about creating the workspace matrix object W with the correct
properties.

Constraints:
• The numerical datatype of TW and B must be identical and floating-point, and must

not be FLA CONSTANT.

• The pointer argument W must not be NULL.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

TW – A hierarchical FLA Obj representing matrix TW .
B – A hierarchical FLA Obj representing matrix B.
W

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix W .

void FLASH_Apply_QUD_UT_inc_create_workspace(FLA_Obj T, FLA_Obj R, FLA_Obj* W);

Purpose: Create a hierarchical workspace matrix W needed when applying QH to R, C, and
D via FLASH Apply QUD UT inc(). Once created, W may be freed normally via
FLASH Obj free().

Notes: This function is provided as a convenience to users of FLASH Apply QUD UT inc() so they
do not need to worry about creating the workspace matrix object W with the correct
properties.

Constraints:
• The numerical datatypes of T and R must be identical and floating-point, and must

not be FLA CONSTANT.

• The pointer argument W must not be NULL.

Caveats: Currently, this function only supports hierarchical depths of exactly 1.

Arguments:

T – A hierarchical FLA Obj representing matrix T .
R – A hierarchical FLA Obj representing matrix R.
W

(on entry) – A pointer to an uninitialized FLA Obj.
(on exit) – A pointer to a new hierarchical FLA Obj to represent matrix W .

5.7 External wrappers

This section documents the wrapper interfaces to the external implementations of all operations supported
within libflame. We refer to these interfaces as wrappers because they wrap the less aesthetically pleasing
Fortran-77 interfaces of the BLAS and LAPACK with easy-to-use functions that operate upon libflame

objects. Furthermore, we refer to them as interfacing to external code because they interface to implemen-
tations that reside outside of libflame. Usually, these external implementations are provided by a separate
BLAS and LAPACK library at link-time. However, they could be provided by some other source. The
user may even request, at configure-time, that libflame be built to include basic netlib implementations

214 5. User-level Application Programming Interfaces

of all LAPACK-level operations supported within the library. The only requirement is that the external
implementation adhere to the original Fortran-77 BLAS or LAPACK interface.

5.7.1 BLAS operations

5.7.1.1 Level-1 BLAS

void FLA_Amax_external(FLA_Obj x, FLA_Obj i);

Purpose: Find the index i of the element of x which has the maximum absolute value, where x
is a general vector and i is a scalar. If the maximum absolute value is shared by more
than one element, then the element whose index is highest is chosen.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine amax.

More Info: This function is similar to that of FLA Amax(). Please see the description for FLA Amax()

for further details.

void FLA_Asum_external(FLA_Obj x, FLA_Obj norm1);

Purpose: Compute the 1-norm of a vector:

‖x‖1 :=

n−1∑
i=0

|χi|

where ‖x‖1 is a scalar and χi is the ith element of general vector x of length n. Upon
completion, the 1-norm ‖x‖1 is stored to norm1.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *asum().

More Info: This function is similar to that of FLA Asum(). Please see the description for FLA Asum()

for further details.

void FLA_Axpy_external(FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform an axpy operation:

B := B + αA

where α is a scalar, and A and B are general matrices.

Notes: If A and B are vectors, FLA Axpy external() will implicitly and automatically perform
the transposition necessary to achieve conformal dimensions.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?axpy().

More Info: This function is similar to that of FLA Axpy(). Please see the description for FLA Axpy()

for further details.

5.7. External wrappers 215

void FLA_Axpyt_external(FLA_Trans trans, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following extended axpy operations:

B := B + αA

B := B + αAT

B := B + αĀ

B := B + αAH

where α is a scalar, and A and B are general matrices. The trans argument allows the
computation to proceed as if A were conjugated and/or transposed.

Notes: If A and B are vectors, FLA Axpyt external() will implicitly and automatically perform
the transposition necessary to achieve conformal dimensions regardless of the value of
trans.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?axpy().

More Info: This function is similar to that of FLA Axpyt(). Please see the description for
FLA Axpyt() for further details.

void FLA_Axpyrt_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha, FLA_Obj A,

FLA_Obj B);

Purpose: Perform one of the following extended axpy operations:

B := B + αA

B := B + αAT

B := B + αĀ

B := B + αAH

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangle of B is updated by the operation. The trans

argument allows the computation to proceed as if A were conjugated and/or transposed.
Note that the uplo and trans arguments together determine which triangle of A is read
and which triangle of B is updated.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?axpy().

More Info: This function is similar to that of FLA Axpyrt(). Please see the description for
FLA Axpyrt() for further details.

216 5. User-level Application Programming Interfaces

void FLA_Axpys_external(FLA_Obj alpha0, FLA_Obj alpha1, FLA_Obj A,

FLA_Obj beta, FLA_Obj B);

Purpose: Perform the following extended axpy operation:

B := βB + α0α1A

where α0, α1 and β are scalars, and A and B are general matrices.

Notes: If A and B are vectors, FLA Axpys external() will implicitly and automatically perform
the transposition necessary to achieve conformal dimensions.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?axpy().

More Info: This function is similar to that of FLA Axpys(). Please see the description for
FLA Axpys() for further details.

void FLA_Copy_external(FLA_Obj A, FLA_Obj B);

Purpose: Copy the numerical contents of A to B:

B := A

where A and B are general matrices.

Notes: If A and B are vectors, FLA Copy external() will implicitly and automatically perform
the transposition necessary to achieve conformal dimensions.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?copy().

More Info: This function is similar to that of FLA Copy(). Please see the description for FLA Copy()

for further details.

void FLA_Copyr_external(FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

Purpose: Perform an extended copy operation on the lower or upper triangles of matrices A and
B:

B := A

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangles of A and B are referenced and updated by the
operation.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?copy().

More Info: This function is similar to that of FLA Copyr(). Please see the description for
FLA Copyr() for further details.

5.7. External wrappers 217

void FLA_Copyrt_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Perform an extended copy operation on triangular matrices A and B:

B := A

B := AT

B := Ā

B := AH

where A and B are triangular (or trapezoidal) matrices. The uplo argument indicates
whether the lower or upper triangle of B is updated by the operation. The trans

argument allows the computation to proceed as if A were conjugated and/or transposed.
Note that the uplo and trans arguments together determine which triangle of A is read
and which triangle of B is overwritten.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?copy().

More Info: This function is similar to that of FLA Copyrt(). Please see the description for
FLA Copyrt() for further details.

void FLA_Copyt_external(FLA_Trans trans, FLA_Obj A, FLA_Obj B);

Purpose: Copy the numerical contents of A to B with one of the following extended operations:

B := A

B := AT

B := Ā

B := AH

where A and B are general matrices. The trans argument allows the computation to
proceed as if A were conjugated and/or transposed.

Notes: If A and B are vectors, FLA Copyt external() will implicitly and automatically perform
the transposition necessary to achieve conformal dimensions regardless of the value of
trans:

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?copy().

More Info: This function is similar to that of FLA Copyt(). Please see the description for
FLA Copyt() for further details.

218 5. User-level Application Programming Interfaces

void FLA_Dot_external(FLA_Obj x, FLA_Obj y, FLA_Obj rho);

Purpose: Perform a dot (inner) product operation between two vectors:

ρ :=

n−1∑
i=0

χiψi

where ρ is a scalar, and χi and ψi are the ith elements of general vectors x and y,
respectively, where both vectors are of length n. Upon completion, the dot product ρ is
stored to rho.

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot() and
?dotu().

More Info: This function is similar to that of FLA Dot(). Please see the description for FLA Dot()

for further details.

void FLA_Dotc_external(FLA_Conj conj, FLA_Obj x, FLA_Obj y, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations:

ρ :=

n−1∑
i=0

χiψi

ρ :=

n−1∑
i=0

χ̄iψi

where ρ is a scalar, and χi and ψi are the ith elements of general vectors x and y,
respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dotc external() behaves
exactly as FLA Dot external().

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot(),
?dotu(), and ?dotc().

More Info: This function is similar to that of FLA Dotc(). Please see the description for FLA Dotc()

for further details.

5.7. External wrappers 219

void FLA_Dots_external(FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj beta, FLA_Obj rho);

Purpose: Perform the following extended dot product operation between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho.

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot() and
?dotu().

More Info: This function is similar to that of FLA Dots(). Please see the description for FLA Dots()

for further details.

void FLA_Dotcs_external(FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj beta, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi

ρ := βρ+ α

n−1∑
i=0

χ̄iψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product
ρ is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dotcs external() behaves
exactly as FLA Dots external().

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot(),
?dotu(), and ?dotc().

More Info: This function is similar to that of FLA Dotcs(). Please see the description for
FLA Dotcs() for further details.

220 5. User-level Application Programming Interfaces

void FLA_Dot2s_external(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj beta, FLA_Obj rho);

Purpose: Perform the following extended dot product operation between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi + ᾱ

n−1∑
i=0

χiψi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product ρ
is stored to rho.

Notes: Though this operation may be reduced to:

ρ := βρ+ (α+ ᾱ)

n−1∑
i=0

χiψi

it is expressed above in unreduced form to allow a more clear contrast to
FLA Dot2cs external().

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot() and
?dotu().

More Info: This function is similar to that of FLA Dot2s(). Please see the description for
FLA Dot2s() for further details.

void FLA_Dot2cs_external(FLA_Conj conj, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj beta, FLA_Obj rho);

Purpose: Perform one of the following extended dot product operations between two vectors:

ρ := βρ+ α

n−1∑
i=0

χiψi + ᾱ

n−1∑
i=0

χiψi

ρ := βρ+ α

n−1∑
i=0

χ̄iψi + ᾱ

n−1∑
i=0

ψ̄iχi

where α, β, and ρ are scalars, and χi and ψi are the ith elements of general vectors x and
y, respectively, where both vectors are of length n. Upon completion, the dot product
ρ is stored to rho. The conj argument allows the computation to proceed as if x were
conjugated.

Notes: If x, y, and ρ are real, the value of conj is ignored and FLA Dot2cs external() behaves
exactly as FLA Dot2s external().

Imp. Notes: This function uses external implementations of the level-1 BLAS routines ?dot(),
?dotu(), and ?dotc().

More Info: This function is similar to that of FLA Dot2cs(). Please see the description for
FLA Dot2cs() for further details.

5.7. External wrappers 221

void FLA_Inv_scal_external(FLA_Obj alpha, FLA_Obj A);

Purpose: Perform an inverse scaling operation:

A := α−1A

where α is a scalar and A is a general matrix.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

More Info: This function is similar to that of FLA Inv scal(). Please see the description for
FLA Inv scal() for further details.

void FLA_Inv_scalc_external(FLA_Conj conjalpha, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform one of the following extended inverse scaling operations:

A := α−1A

A := ᾱ−1A

where α is a scalar and A is a general matrix. The conjalpha argument allows the
computation to proceed as if α were conjugated.

Notes: If α is real, the value of conjalpha is ignored and FLA Inv scalc external() behaves
exactly as FLA Inv scal external().

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

More Info: This function is similar to that of FLA Inv scalc(). Please see the description for
FLA Inv scalc() for further details.

void FLA_Nrm2_external(FLA_Obj x, FLA_Obj norm);

Purpose: Compute the 2-norm of a vector:

‖x‖2 :=

(
n−1∑
i=0

|χi|2
) 1

2

where ‖x‖2 is a scalar and χi is the ith element of general vector x of length n. Upon
completion, the 2-norm ‖x‖2 is stored to norm.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *nrm2().

More Info: This function is similar to that of FLA Nrm2(). Please see the description for FLA Nrm2()

for further details.

222 5. User-level Application Programming Interfaces

void FLA_Scal_external(FLA_Obj alpha, FLA_Obj A);

Purpose: Perform a scaling operation:

A := αA

where α is a scalar and A is a general matrix.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

More Info: This function is similar to that of FLA Scal(). Please see the description for FLA Scal()

for further details.

void FLA_Scalc_external(FLA_Conj conjalpha, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform one of the following extended scaling operations:

A := αA

A := ᾱA

where α is a scalar and A is a general matrix. The conjalpha argument allows the
computation to proceed as if α were conjugated.

Notes: If α is real, the value of conjalpha is ignored and FLA Scalc external() behaves exactly
as FLA Scal external().

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

More Info: This function is similar to that of FLA Scalc(). Please see the description for
FLA Scalc() for further details.

void FLA_Scalr_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A);

Purpose: Perform an extended scaling operation on the lower or upper triangle of a matrix:

A := αA

where α is a scalar and A is a general square matrix. The uplo argument indicates
whether the lower or upper triangle of A is referenced and updated by the operation.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine *scal().

More Info: This function is similar to that of FLA Scalr(). Please see the description for
FLA Scalr() for further details.

void FLA_Swap_external(FLA_Obj A, FLA_Obj B);

Purpose: Swap the contents of two general matrices A and B.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?swap().

More Info: This function is similar to that of FLA Swap(). Please see the description for FLA Swap()

for further details.

5.7. External wrappers 223

void FLA_Swapt_external(FLA_Trans transab, FLA_Obj A, FLA_Obj B);

Purpose: Swap the contents of two general matrices A and B. If transab is FLA TRANSPOSE or
FLA CONJ TRANSPOSE, the computation proceeds as if only A (or only B) were transposed.
Furthermore, if transab is FLA CONJ NO TRANSPOSE or FLA CONJ TRANSPOSE, both A and
B are conjugated after their contents are swapped.

Imp. Notes: This function uses an external implementation of the level-1 BLAS routine ?swap().

More Info: This function is similar to that of FLA Swapt(). Please see the description for
FLA Swapt() for further details.

5.7.1.2 Level-2 BLAS

void FLA_Gemv_external(FLA_Trans transa, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following general matrix-vector multiplication operations:

y := βy + αAx

y := βy + αATx

y := βy + αĀx

y := βy + αAHx

where α and β are scalars, A is a general matrix, and x and y are general vectors.
The trans argument allows the computation to proceed as if A were conjugated and/or
transposed.

Notes: The above matrix-vector operations implicitly assume x and y to be column vectors.
However, since transposing a vector does not change the way its elements are accessed,
we may also express the above operations as:

yr := βyr + αxrA
T

yr := βyr + αxrA

yr := βyr + αxrA
H

yr := βyr + αxrĀ

respectively, where xr and yr are row vectors.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?gemv().

More Info: This function is similar to that of FLA Gemv(). Please see the description for FLA Gemv()

for further details.

224 5. User-level Application Programming Interfaces

void FLA_Gemvc_external(FLA_Trans transa, FLA_Conj conjx, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended general matrix-vector multiplication operations:

y := βy + αAx y := βy + αAx̄

y := βy + αATx y := βy + αAT x̄

y := βy + αĀx y := βy + αĀx̄

y := βy + αAHx y := βy + αAH x̄

where α and β are scalars, A is a general matrix, and x and y are general vectors.
The trans argument allows the computation to proceed as if A were conjugated and/or
transposed. Likewise, the conjx argument allows the computation to proceed as if x
were conjugated.

Notes: The above matrix-vector operations implicitly assume x and y to be column vectors.
However, since transposing a vector does not change the way its elements are accessed,
we may also express the above operations as:

yr := βyr + αxrA
T yr := βyr + αx̄rA

T

yr := βyr + αxrA yr := βyr + αx̄rA

yr := βyr + αxrA
H yr := βyr + αx̄rA

H

yr := βyr + αxrĀ yr := βyr + αx̄rĀ

respectively, where xr and yr are row vectors.
If A, x, and y are real, the value of conjx is ignored and FLA Gemvc external() behaves
exactly as FLA Gemv external().

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?gemv().

More Info: This function is similar to that of FLA Gemvc(). Please see the description for
FLA Gemvc() for further details.

void FLA_Ger_external(FLA_Obj alpha, FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform a general rank-1 update:

A := A+ αxyT

where α is a scalar, A is a general matrix, and x and y are general vectors.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?ger().

More Info: This function is similar to that of FLA Ger(). Please see the description for FLA Ger()

for further details.

5.7. External wrappers 225

void FLA_Gerc_external(FLA_Conj conjx, FLA_Conj conjy, FLA_Obj alpha,

FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform one of the following extended general rank-1 updates:

A := A+ αxyT

A := A+ αxȳT

A := A+ αx̄yT

A := A+ αx̄ȳT

where α is a scalar, A is a general matrix, and x and y are general vectors. The conjx

and conjy arguments allow the computation to proceed as if x and/or y were conjugated.

Notes: If A, x, and y are real, the values of conjx and conjy are ignored and
FLA Gerc external() behaves exactly as FLA Ger external().

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?ger(),
?geru(), and ?gerc().

More Info: This function is similar to that of FLA Gerc(). Please see the description for FLA Gerc()

for further details.

void FLA_Hemv_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform a Hermitian matrix-vector multiplication (hemv) operation:

y := βy + αAx

where α and β are scalars, A is a Hermitian matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation.

Notes: When invoked with real objects, this function performs the symv operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?hemv() and
?symv().

More Info: This function is similar to that of FLA Hemv(). Please see the description for FLA Hemv()

for further details.

226 5. User-level Application Programming Interfaces

void FLA_Hemvc_external(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended Hermitian matrix-vector multiplication (hemv)
operations:

y := βy + αAx

y := βy + αĀx

where α and β are scalars, A is a Hermitian matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced
by the operation. The conj argument allows the computation to proceed as if A were
conjugated.

Notes: When invoked with real objects, this function performs the symv operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?hemv() and
?symv().

More Info: This function is similar to that of FLA Hemvc(). Please see the description for
FLA Hemvc() for further details.

void FLA_Her_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A);

Purpose: Perform a Hermitian rank-1 update (her) operation:

A := A+ αxxH

where α is a scalar, A is a Hermitian matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Notes: When invoked with real objects, this function performs the her operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?her() and
?syr().

More Info: This function is similar to that of FLA Her(). Please see the description for FLA Her()

for further details.

5.7. External wrappers 227

void FLA_Herc_external(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha, FLA_Obj x,

FLA_Obj A);

Purpose: Perform one of the following extended Hermitian rank-1 update (her) operations:

A := A+ αxxH

A := A+ αx̄xT

where α is a scalar, A is a Hermitian matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation. The conj argument allows the computation of the transposed rank-1
product x̄xT .

Notes: When invoked with real objects, this function performs the her operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?her() and
?syr().

More Info: This function is similar to that of FLA Herc(). Please see the description for FLA Herc()

for further details.

void FLA_Her2_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj A);

Purpose: Perform a Hermitian rank-2 update (her2) operation:

A := A+ αxyH + ᾱyxH

where α is a scalar, A is a Hermitian matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Notes: When invoked with real objects, this function performs the her2 operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?her2() and
?syr2().

More Info: This function is similar to that of FLA Her2(). Please see the description for FLA Her2()

for further details.

228 5. User-level Application Programming Interfaces

void FLA_Her2c_external(FLA_Uplo uplo, FLA_Conj conj, FLA_Obj alpha,

FLA_Obj x, FLA_Obj y, FLA_Obj A);

Purpose: Perform one of the following extended Hermitian rank-2 update (her2) operations:

A := A+ αxyH + ᾱyxH

A := A+ αx̄yT + ᾱȳxT

where α is a scalar, A is a Hermitian matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation. The conj argument allows the computation of the transposed rank-2
products x̄yT and ȳxT .

Notes: When invoked with real objects, this function performs the her2 operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?her2() and
?syr2().

More Info: This function is similar to that of FLA Her2c(). Please see the description for
FLA Her2c() for further details.

void FLA_Symv_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj A, FLA_Obj x,

FLA_Obj beta, FLA_Obj y);

Purpose: Perform a symmetric matrix-vector multiplication (symv) operation:

y := βy + αAx

where α and β are scalars, A is a symmetric matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?symv().

More Info: This function is similar to that of FLA Symv(). Please see the description for FLA Symv()

for further details.

void FLA_Syr_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj A);

Purpose: Perform a symmetric rank-1 update (syr) operation:

A := A+ αxxT

where α is a scalar, A is a symmetric matrix, and x is a general vector. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?syr().

More Info: This function is similar to that of FLA Syr(). Please see the description for FLA Syr()

for further details.

5.7. External wrappers 229

void FLA_Syr2_external(FLA_Uplo uplo, FLA_Obj alpha, FLA_Obj x, FLA_Obj y,

FLA_Obj A);

Purpose: Perform a symmetric rank-2 update (syr2) operation:

A := A+ αxyT + αyxT

where α is a scalar, A is a symmetric matrix, and x and y are general vectors. The uplo

argument indicates whether the lower or upper triangle of A is referenced and updated
by the operation.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?syr2().

More Info: This function is similar to that of FLA Syr2(). Please see the description for FLA Syr2()

for further details.

void FLA_Trmv_external(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj A,

FLA_Obj x);

Purpose: Perform one of the following triangular matrix-vector multiplication (trmv) operations:

x := Ax

x := ATx

x := Āx

x := AHx

where A is a triangular matrix and x is a general vector. The uplo argument indicates
whether the lower or upper triangle of A is referenced by the operation. The transa

argument allows the computation to proceed as if A were conjugated and/or transposed.
The diag argument indicates whether the diagonal of A is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trmv().

More Info: This function is similar to that of FLA Trmv(). Please see the description for FLA Trmv()

for further details.

230 5. User-level Application Programming Interfaces

void FLA_Trmvsx_external(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj alpha,

FLA_Obj A, FLA_Obj x, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended triangular matrix-vector multiplication (trmv)
operations:

y := βy + αAx

y := βy + αATx

y := βy + αĀx

y := βy + αAHx

where α and β are scalars, A is a triangular matrix, and x and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation. The transa argument allows the computation to proceed as if A were
conjugated and/or transposed. The diag argument indicates whether the diagonal of A
is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trmv().

More Info: This function is similar to that of FLA Trmvsx(). Please see the description for
FLA Trmvsx() for further details.

void FLA_Trsv_external(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj A,

FLA_Obj b);

Purpose: Perform one of the following triangular solve (trsv) operations:

Ax = b

ATx = b

Āx = b

AHx = b

which, respectively, are solved by overwriting b with the contents of the solution vector
x as follows:

b := A−1b

b := A−T b

b := Ā−1b

b := A−Hb

where A is a triangular matrix and x and b are general vectors. The uplo argument
indicates whether the lower or upper triangle of A is referenced by the operation. The
transa argument allows the computation to proceed as if A were conjugated and/or
transposed. The diag argument indicates whether the diagonal of A is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trsv().

More Info: This function is similar to that of FLA Trsv(). Please see the description for FLA Trsv()

for further details.

5.7. External wrappers 231

void FLA_Trsvsx_external(FLA_Uplo uplo, FLA_Trans transa, FLA_Diag diag, FLA_Obj alpha,

FLA_Obj A, FLA_Obj b, FLA_Obj beta, FLA_Obj y);

Purpose: Perform one of the following extended triangular solve (trsv) operations:

y := βy + αA−1b

y := βy + αA−T b

y := βy + αĀ−1b

y := βy + αA−Hb

where α and β are scalars, A is a triangular matrix, and b and y are general vectors.
The uplo argument indicates whether the lower or upper triangle of A is referenced by
the operation. The transa argument allows the computation to proceed as if A were
conjugated and/or transposed. The diag argument indicates whether the diagonal of A
is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trsv().

More Info: This function is similar to that of FLA Trsvsx(). Please see the description for
FLA Trsvsx() for further details.

5.7.1.3 Level-3 BLAS

void FLA_Gemm_external(FLA_Trans transa, FLA_Trans transb, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following general matrix-matrix multiplication (gemm) operations:

C := βC + αAB C := βC + αĀB

C := βC + αABT C := βC + αĀBT

C := βC + αAB̄ C := βC + αĀB̄

C := βC + αABH C := βC + αĀBH

C := βC + αATB C := βC + αAHB

C := βC + αATBT C := βC + αAHBT

C := βC + αAT B̄ C := βC + αAHB̄

C := βC + αATBH C := βC + αAHBH

where α and β are scalars and A, B, and C are general matrices. The transa and
transb arguments allows the computation to proceed as if A and/or B were conjugated
and/or transposed.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?gemm().

More Info: This function is similar to that of FLA Gemm(). Please see the description for FLA Gemm()

for further details.

232 5. User-level Application Programming Interfaces

void FLA_Hemm_external(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian matrix-matrix multiplication (hemm) operations:

C := βC + αAB

C := βC + αBA

where α and β are scalars, A is a Hermitian matrix, and B and C are general matrices.
The side argument indicates whether matrix A is multiplied on the left or the right
side of B. The uplo argument indicates whether the lower or upper triangle of A is
referenced by the operation.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?hemm() and
?symm().

More Info: This function is similar to that of FLA Hemm(). Please see the description for FLA Hemm()

for further details.

void FLA_Herk_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian rank-k update (herk) operations:

C := βC + αAAH

C := βC + αAHA

where α and β are scalars, C is a Hermitian matrix, and A is a general matrix. The uplo
argument indicates whether the lower or upper triangle of C is referenced and updated
by the operation. The trans argument allows the computation to proceed as if A were
conjugate-transposed, which results in the alternate rank-k product AHA.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?herk() and
?syrk().

More Info: This function is similar to that of FLA Herk(). Please see the description for FLA Herk()

for further details.

5.7. External wrappers 233

void FLA_Her2k_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following Hermitian rank-2k update (her2k) operations:

C := βC + αABH + ᾱBAH

C := βC + αAHB + ᾱBHA

where α and β are scalars, C is a Hermitian matrix, and A and B are general matrices.
The uplo argument indicates whether the lower or upper triangle of C is referenced and
updated by the operation. The trans argument allows the computation to proceed as
if A and B were conjugate-transposed, which results in the alternate rank-2k products
AHB and BHA.

Imp. Notes: This function uses external implementations of the level-3 BLAS routines ?her2k() and
?syr2k().

More Info: This function is similar to that of FLA Her2k(). Please see the description for
FLA Her2k() for further details.

void FLA_Symm_external(FLA_Side side, FLA_Uplo uplo, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric matrix-matrix multiplication (symm) operations:

C := βC + αAB

C := βC + αBA

where α and β are scalars, A is a symmetric matrix, and B and C are general matrices.
The side argument indicates whether the symmetric matrix A is multiplied on the left
or the right side of B. The uplo argument indicates whether the lower or upper triangle
of A is referenced by the operation.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?symm().

More Info: This function is similar to that of FLA Symm(). Please see the description for FLA Symm()

for further details.

void FLA_Syrk_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric rank-k update (syrk) operations:

C := βC + αAAT

C := βC + αATA

where α and β are scalars, C is a symmetric matrix, and A is a general matrix. The uplo
argument indicates whether the lower or upper triangle of C is referenced and updated
by the operation. The trans argument allows the computation to proceed as if A were
transposed, which results in the alternate rank-k product ATA.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?syrk().

More Info: This function is similar to that of FLA Syrk(). Please see the description for FLA Syrk()

for further details.

234 5. User-level Application Programming Interfaces

void FLA_Syr2k_external(FLA_Uplo uplo, FLA_Trans trans, FLA_Obj alpha,

FLA_Obj A, FLA_Obj B, FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following symmetric rank-2k update (syr2k) operations:

C := βC + αABT + αBAT

C := βC + αATB + αBTA

where α and β are scalars, C is a symmetric matrix, and A and B are general matrices.
The uplo argument indicates whether the lower or upper triangle of C is referenced and
updated by the operation. The trans argument allows the computation to proceed as
if A and B were transposed, which results in the alternate rank-2k products ATB and
BTA.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?syr2k().

More Info: This function is similar to that of FLA Syr2k(). Please see the description for
FLA Syr2k() for further details.

void FLA_Trmm_external(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following triangular matrix-matrix multiplication (trmm) operations:

B := αAB B := αBA

B := αATB B := αBAT

B := αĀB B := αBĀ

B := αAHB B := αBAH

where α is a scalar, A is a triangular matrix, and B is a general matrix. The side

argument indicates whether the triangular matrix A is multiplied on the left or the right
side of B. The uplo argument indicates whether the lower or upper triangle of A is
referenced by the operation. The trans argument may be used to perform the check
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trmm().

More Info: This function is similar to that of FLA Trmm(). Please see the description for FLA Trmm()

for further details.

5.7. External wrappers 235

void FLA_Trmmsx_external(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,

FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following extended triangular matrix-matrix multiplication opera-
tions:

C := βC + αAB C := βC + αBA

C := βC + αATB C := βC + αBAT

C := βC + αĀB C := βC + αBĀ

C := βC + αAHB C := βC + αBAH

where α and β are scalars, A is a triangular matrix, and B and C are general matrices.
The side argument indicates whether the triangular matrix A is multiplied on the left or
the right side of B. The uplo argument indicates whether the lower or upper triangle of
A is referenced by the operation. The trans argument allows the computation to proceed
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• The dimensions of B and C must be conformal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trmm().

Arguments:

side – Indicates whether A is multipled on the left or right side of B.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

236 5. User-level Application Programming Interfaces

void FLA_Trsm_external(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans, FLA_Diag diag,

FLA_Obj alpha, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following triangular solve with multiple right-hand sides (trsm)
operations:

AX = αB XA = αB

ATX = αB XAT = αB

ĀX = αB XĀ = αB

AHX = αB XAH = αB

and overwrite B with the contents of the solution matrix X as follows:

B := αA−1B B := αBA−1

B := αA−TB B := αBA−T

B := αĀ−1B B := αBĀ−1

B := αA−HB B := αBA−H

where α is a scalar, A is a triangular matrix, and X and B are general matrices. The
side argument indicates whether the triangular matrix A is multiplied on the left or the
right side of X. The uplo argument indicates whether the lower or upper triangle of A
is referenced by the operation. The trans argument allows the computation to proceed
as if A were conjugated and/or transposed. The diag argument indicates whether the
diagonal of A is unit or non-unit.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trsm().

More Info: This function is similar to that of FLA Trsm(). Please see the description for FLA Trsm()

for further details.

5.7. External wrappers 237

void FLA_Trsmsx_external(FLA_Side side, FLA_Uplo uplo, FLA_Trans trans,

FLA_Diag diag, FLA_Obj alpha, FLA_Obj A, FLA_Obj B,

FLA_Obj beta, FLA_Obj C);

Purpose: Perform one of the following extended triangular solve with multiple right-hand sides
(trsm) operations:

AX = αB XA = αB

ATX = αB XAT = αB

ĀX = αB XĀ = αB

AHX = αB XAH = αB

and update C with the contents of the solution matrix X as follows:

C := βC + αA−1B C := βC + αBA−1

C := βC + αA−TB C := βC + αBA−T

C := βC + αĀ−1B C := βC + αBĀ−1

C := βC + αA−HB C := βC + αBA−H

where α and β are scalars, A is a triangular matrix, and X, B, and C are general
matrices. The side argument indicates whether the triangular matrix A is multiplied
on the left or the right side of X. The uplo argument indicates whether the lower or
upper triangle of A is referenced by the operation. The trans argument allows the
computation to proceed as if A were conjugated and/or transposed. The diag argument
indicates whether the diagonal of A is unit or non-unit.

Constraints:
• The numerical datatypes of A, B, and C must be identical and floating-point, and

must not be FLA CONSTANT.

• If α and β are not of datatype FLA CONSTANT, then they must match the datatypes
of A, B, and C.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• The dimensions of B and C must be conformal.

• diag may not be FLA ZERO DIAG.

Imp. Notes: This function uses an external implementation of the level-3 BLAS routine ?trsm().

Arguments:

side – Indicates whether A is multipled on the left or right side of X.
uplo – Indicates whether the lower or upper triangle of A is referenced during

the operation.
trans – Indicates whether the operation proceeds as if A were conjugated

and/or transposed.

diag – Indicates whether the diagonal of A is unit or non-unit.
alpha – An FLA Obj representing scalar α.
A – An FLA Obj representing matrix A.
B – An FLA Obj representing matrix B.
beta – An FLA Obj representing scalar β.
C – An FLA Obj representing matrix C.

238 5. User-level Application Programming Interfaces

5.7.2 LAPACK operations

FLA_Error FLA_Chol_blk_external(FLA_Uplo uplo, FLA_Obj A);

FLA_Error FLA_Chol_unb_external(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform one of the following Cholesky factorizations (chol):

A → LLT

A → UTU

A → LLH

A → UHU

where A is positive definite. If A is real, then it is assumed to be symmetric; otherwise,
if A is complex, then it is assumed to be Hermitian. The operation references and then
overwrites the lower or upper triangle of A with the Cholesky factor L or U , depending
on the value of uplo.

Imp. Notes: FLA Chol blk external() and FLA Chol unb external() perform their computation
by calling external implementations of the LAPACK routines ?potrf() and ?potf2(),
respectively. The algorithmic variants employed by these routines, as well as the blocksize
used by ?potrf(), are implementation-dependent.

Caveats: FLA Chol blk external() and FLA Chol unb external() are available only if external
LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA Chol(). Please see the description for FLA Chol()

for further details.

FLA_Error FLA_Trinv_blk_external(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

FLA_Error FLA_Trinv_unb_external(FLA_Uplo uplo, FLA_Diag diag, FLA_Obj A);

Purpose: Perform a triangular matrix inversion (trinv):

A := A−1

where A is a general triangular matrix. The operation references and then overwrites
the lower or upper triangle of A with its inverse, A−1, depending on the value of uplo.
The diag argument indicates whether the diagonal of A is unit or non-unit.

Imp. Notes: FLA Trinv blk external() and FLA Trinv unb external() perform their computation
by calling external implementations of the LAPACK routines ?trtri() and ?trti2(),
respectively. The algorithmic variants employed by these routines, as well as the blocksize
used by ?trtri(), are implementation-dependent.

Caveats: FLA Trinv blk external() and FLA Trinv unb external() are available only if exter-
nal LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA Trinv(). Please see the description for
FLA Trinv() for further details.

5.7. External wrappers 239

void FLA_Ttmm_blk_external(FLA_Uplo uplo, FLA_Obj A);

void FLA_Ttmm_unb_external(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform one of the following triangular-transpose matrix multiplies (ttmm):

A := LTL

A := UUT

A := LHL

A := UUH

where A is a triangular matrix with a real diagonal. The operation references and then
overwrites the lower or upper triangle of A with its inverse, A−1, depending on the value
of uplo.

Imp. Notes: FLA Ttmm blk external() and FLA Ttmm unb external() perform their computation
by calling external implementations of the LAPACK routines ?lauum() and ?lauu2(),
respectively. The algorithmic variants employed by these routines, as well as the blocksize
used by ?lauum(), are implementation-dependent.

Caveats: FLA Ttmm blk external() and FLA Ttmm unb external() are available only if external
LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA Ttmm(). Please see the description for FLA Ttmm()

for further details.

void FLA_SPDinv_blk_external(FLA_Uplo uplo, FLA_Obj A);

Purpose: Perform a positive definite matrix inversion (spdinv):

A := A−1

where A is positive definite. If A is real, then it is assumed to be symmetric; otherwise,
if A is complex, then it is assumed to be Hermitian. The operation references and then
overwrites the lower or upper triangle of A with its inverse, A−1, depending on the value
of uplo.

Imp. Notes: FLA SPDinv blk external() performs its computation by calling external implementa-
tions of the LAPACK routines ?potrf(), ?trtri(), and ?lauum(). The algorithmic
variants and blocksizes used by these routines are implementation-dependent.

Caveats: FLA SPDinv blk external() is available only if external LAPACK interfaces were en-
abled at configure-time.

More Info: This function is similar to that of FLA SPDinv(). Please see the description for
FLA SPDinv() for further details.

240 5. User-level Application Programming Interfaces

FLA_Error FLA_LU_piv_blk_external(FLA_Obj A, FLA_Obj p);

FLA_Error FLA_LU_piv_unb_external(FLA_Obj A, FLA_Obj p);

Purpose: Perform an LU factorization with partial row pivoting (lupiv):

A → PLU

where A is a general matrix, L is lower triangular (or lower trapezoidal if m > n) with
a unit diagonal, U is upper triangular (or upper trapezoidal if m < n), and P is a
permutation matrix. The operation overwrites the strictly lower triangular portion of A
with L and the upper triangular portion of A with U . The diagonal elements of L are
not stored.

Imp. Notes: FLA LU piv blk external() and FLA LU piv unb external() perform their compu-
tation by calling external implementations of the LAPACK routines ?getrf() and
?getf2(), respectively. The algorithmic variants employed by these routines, as well
as the blocksize used by ?getrf(), are implementation-dependent.

Caveats: FLA LU piv blk external() and FLA LU piv unb external() are available only if ex-
ternal LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA LU nopiv(). Please see the description for
FLA LU nopiv() for further details.

5.7. External wrappers 241

void FLA_QR_blk_external(FLA_Obj A, FLA_Obj t);

void FLA_QR_unb_external(FLA_Obj A, FLA_Obj t);

Purpose: Perform a QR factorization (qr):

A → QR

where A is a general matrix, R is upper triangular (or upper trapezoidal if m < n), and
Q is the product of k = min(m,n) Householder reflectors:

Q = H(0)H(1) · · ·H(k − 1)

Each H(i) has the form

H(i) = I − τvvT

where τ is a scalar and v is a vector of length m. If νj is the jth element of v, we
may describe v such that, for a given H(i), the element νi = 1 while elements ν0:i−1
are zero, with other entries holding non-zero values. The operation overwrites the the
upper triangle (or upper trapezoid) of A with R. However, the matrix Q is not stored
explicitly. Instead, the operation stores the τ associated with H(i) to the ith element of
vector t, and also stores the non-unit, non-zero entries νi+1:m−1 of Householder reflectors
H0 through Hk column-wise below the diagonal of A. More specifically, entries νi+1:m−1
are stored to elements i+ 1 : m− 1 of the ith column of matrix A.

Caveats: FLA QR blk external() and FLA QR unb external() are available only if external LA-
PACK interfaces were enabled at configure-time.

Constraints:
• The numerical datatypes of A and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The length of t must be min(m,n) where A is m× n.

Imp. Notes: FLA QR blk external() and FLA QR unb external() perform their computation by call-
ing external implementations of the LAPACK routines ?geqrf() and ?geqr2(), respec-
tively. The algorithmic variants employed by these routines, as well as the blocksize used
by ?geqrf(), are implementation-dependent.

Arguments:

A – An FLA Obj representing matrix A.
t – An FLA Obj representing vector t.

242 5. User-level Application Programming Interfaces

void FLA_LQ_blk_external(FLA_Obj A, FLA_Obj t);

void FLA_LQ_unb_external(FLA_Obj A, FLA_Obj t);

Purpose: Perform an LQ factorization (lq):

A → LQ

where A is a general matrix, L is a lower triangular (or lower trapezoidal if m > n), and
Q is the product of k = min(m,n) Householder reflectors:

Q = H(k − 1) · · ·H(1)H(0)

Each H(i) has the form

H(i) = I − τvvT

where τ is a scalar and v is a vector of length n. If νj is the jth element of v, we
may describe v such that, for a given H(i), the element νi = 1 while elements ν0:i−1
are zero, with other entries holding non-zero values. The operation overwrites the the
lower triangle (or lower trapezoid) of A with L. However, the matrix Q is not stored
explicitly. Instead, the operation stores the τ associated with H(i) to the ith element of
vector t, and also stores the non-unit, non-zero entries νi+1:n−1 of Householder reflectors
H0 through Hk row-wise above the diagonal of A. More specifically, entries νi+1:n−1 are
stored to elements i+ 1 : n− 1 of the ith row of matrix A.

Caveats: FLA LQ blk external() and FLA LQ unb external() are available only if external LA-
PACK interfaces were enabled at configure-time.

Constraints:
• The numerical datatypes of A and t must be identical and floating-point, and must

not be FLA CONSTANT.

• The length of t must be min(m,n) where A is m× n.

Imp. Notes: FLA LQ blk external() and FLA LQ unb external() perform their computation by call-
ing external implementations of the LAPACK routines ?gelqf() and ?gelq2(), respec-
tively. The algorithmic variants employed by these routines, as well as the blocksize used
by ?gelqf(), are implementation-dependent.

Arguments:

A – An FLA Obj representing matrix A.
t – An FLA Obj representing vector t.

5.7. External wrappers 243

void FLA_Hess_blk_external(FLA_Obj A, FLA_Obj t, int ilo, int ihi);

void FLA_Hess_unb_external(FLA_Obj A, FLA_Obj t, int ilo, int ihi);

Purpose: Perform a reduction to upper Hessenberg form (hess) via Householder transformations:

A → QRQH

where Q is an orthogonal matrix (or, a unitary matrix if A is complex) and R is an
upper Hessenberg matrix (zeroes below the first subdiagonal). Matrix Q is expressed as
a product of (ihi − ilo) Householder reflectors:

Q = H(ilo)H(ilo + 1) · · ·H(ihi − 1)

Each H(i) has the form

H(i) = I − τvvH

where τ is a real scalar and v is a real vector of length n. If νj is the jth element of v, we
may describe v such that, for a given H(i), the element νi+1 = 1 while elements ν0:i and
νihi+1:n−1 are zero, with other entries holding non-zero values. The operation overwrites
the the upper triangle and first subdiagonal of A with H. However, the matrix Q is
not stored explicitly. Instead, the operation stores the τ associated with H(i) to the ith
element of vector t, and also stores the non-unit, non-zero entries νi+2:ihi

of Householder
reflectors Hilo through Hihi−2 to the elements below the first subdiagonal of A. More
specifically, entries νi+2:ihi

are stored to elements i+ 2 : ihi of the ith column of matrix
A.

Imp. Notes: FLA Hess blk external() and FLA Hess unb external() perform their computation
by calling external implementations of the LAPACK routines ?gehrd() and ?gehd2(),
respectively. The algorithmic variants employed by these routines, as well as the blocksize
used by ?gehrd(), are implementation-dependent.

More Info: This function is similar to that of FLA Hess UT(). Please see the description for
FLA Hess UT() for further details.

void FLA_Tridiag_blk_external(FLA_Uplo uplo, FLA_Obj A, FLA_Obj t);

void FLA_Tridiag_unb_external(FLA_Uplo uplo, FLA_Obj A, FLA_Obj t);

Purpose: Perform a reduction to tridiagonal form (tridiag) via Householder transformations:

A → QRQH

where Q is an orthogonal matrix (or, a unitary matrix if A is complex) and R is a
tridiagonal matrix (zeroes below the first subdiagonal and above the first superdiagonal).

Imp. Notes: FLA Tridiag blk external() and FLA Tridiag unb external() perform their
computation by calling external implementations of the LAPACK routines
?sytrd()/?hetrd()and ?sytd2()/?hetd2(), respectively. The algorithmic vari-
ants employed by these routines, as well as the blocksizes used by ?sytrd() and
?hetrd(), are implementation-dependent.

More Info: This function is similar to that of FLA Tridiag UT(). Please see the description for
FLA Tridiag UT() for further details.

244 5. User-level Application Programming Interfaces

void FLA_Apply_Q_blk_external(FLA_Side side, FLA_Trans trans, FLA_Store storev,

FLA_Obj A, FLA_Obj t, FLA_Obj B);

Purpose: Apply a matrix Q (or QT or QH) to a general matrix B from either the left or the right:

B := QB B := BQ

B := QTB B := BQT

B := QHB B := BQH

where Q is the orthogonal (or, if A is complex, unitary) matrix implicitly defined by the
Householder vectors stored in matrix A and the τ values stored in vector t. The side

argument indicates whether Q is applied to B from the left or the right. The trans

argument indicates whether Q or QT (or QH) is applied to B. The storev argument
indicates whether the Householder vectors which define Q are stored column-wise (in the
strictly lower triangle) or row-wise (in the strictly upper triangle) of A.

Imp. Notes: FLA Apply Q blk external() performs its computation by calling an external imple-
mentation of the LAPACK routines ?ormqr()/?unmqr()/?ormlq()/?unmlq(). The al-
gorithmic variants employed by these routines, as well as the blocksizes used by ?ormqr(),
?unmqr(), ?ormlq(), and ?unmlq() are implementation-dependent.

Caveats: FLA Apply Q blk external() is available only if external LAPACK interfaces were en-
abled at configure-time.

Constraints:
• The numerical datatypes of A, t, and B must be identical and floating-point, and

must not be FLA CONSTANT.

• If side equals FLA LEFT, then the number of rows in B and the order of A must be
equal; otherwise, if side equals FLA RIGHT, then the number of columns in B and the
order of A must be equal.

• If A is real, then trans must be FLA NO TRANSPOSE or FLA TRANSPOSE; otherwise if A
is complex, then trans must be FLA NO TRANSPOSE or FLA CONJ TRANSPOSE.

• The length of t must be min(m,n) where A is m× n.

Arguments:

side – Indicates whether Q (or QT or QH) is multipled on the left or right
side of B.

trans – Indicates whether the operation proceeds as if Q were transposed (or
conjugate-transposed).

storev – Indicates whether the vectors stored within A are stored column-wise
or row-wise.

A – An FLA Obj representing matrix A.
t – An FLA Obj representing vector t.
B – An FLA Obj representing matrix B.

5.7. External wrappers 245

void FLA_Sylv_blk_external(FLA_Trans transa, FLA_Trans transb, FLA_Obj isgn,

FLA_Obj A, FLA_Obj B, FLA_Obj C, FLA_Obj scale);

void FLA_Sylv_unb_external(FLA_Trans transa, FLA_Trans transb, FLA_Obj isgn,

FLA_Obj A, FLA_Obj B, FLA_Obj C, FLA_Obj scale);

Purpose: Solve one of the following triangular Sylvester equations (sylv):

AX ± XB = C
AX ± XBT = C
ATX ± XB = C
ATX ± XBT = C

where A and B are real upper triangular matrices and C is a real general matrix. If A,
B, and C are complex matrices, then the possible operations are:

AX ± XB = C
AX ± XBH = C
AHX ± XB = C
AHX ± XBH = C

where A and B are complex upper triangular matrices and C is a complex general matrix.
The operation references and then overwrites matrix C with the solution matrix X. The
isgn argument is a scalar integer object that indicates whether the ± sign between
terms is a plus or a minus. The scale argument is not referenced and set to 1.0 upon
completion.

Imp. Notes: FLA Sylv blk external() and FLA Sylv unb external() perform their computation by
calling an external implementation of the LAPACK routine ?trsyl(). The algorithmic
variant employed by this routine is implementation-dependent.

Imp. Notes: FLA Sylv blk external() is simply a wrapper to FLA Sylv unb external().

Caveats: FLA Sylv blk external() and FLA Sylv unb external() are available only if external
LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA Sylv(). Please see the description for FLA Sylv()

for further details.

246 5. User-level Application Programming Interfaces

void FLA_Eig_gest_blk_external(FLA_Inv inv, FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

void FLA_Eig_gest_unb_external(FLA_Inv inv, FLA_Uplo uplo, FLA_Obj A, FLA_Obj B);

Purpose: Perform one of the following operations to reduce a symmetric- or Hermitian-definite
eigenproblem to standard form (eiggest):

A := LHAL

A := UAUH

A := LAL−H

A := U−HAU

where A, on input and output, is symmetric (or Hermitian) and B contains either a
lower (L) or upper (U) triangular Cholesky factor. The value of inv determines whether
the operation, as expressed above, requires an inversion of L or U . The value of uplo
determines which triangle of A is read on input, which triangle of the symmetric (or
Hermitian) right-hand side is stored, and also which Cholesky factor exists in B.

Imp. Notes: FLA Eig gest blk external() and FLA Eig gest unb external() perform their
computation by calling external implementations of the LAPACK routines
?sygst()/?hegst() and ?sygs2()/?hegs2(), respectively. The algorithmic variants
employed by these routines, as well as the blocksize used by ?sygst()/?hegst(), are
implementation-dependent.

Caveats: FLA Eig gest blk external() and FLA Eig gest unb external() are available only if
external LAPACK interfaces were enabled at configure-time.

More Info: This function is similar to that of FLA Eig gest(). Please see the description for
FLA Eig gest() for further details.

5.7. External wrappers 247

FLA_Error FLA_Hevd_external(FLA_Evd_type jobz, FLA_Uplo uplo, FLA_Obj A, FLA_Obj l);

Purpose: Perform a Hermitian eigenvalue decomposition (hevd):

A → UΛUH

where Λ is a diagonal matrix whose elements contain the eigenvalues of A, and
the columns of U contain the eigenvectors of A. The jobz argument determines
whether only eigenvalues (FLA EVD WITHOUT VECTORS) or both eigenvalues and eigenvec-
tors (FLA EVD WITH VECTORS) are computed. The uplo argument determines whether A
is stored in the lower or upper triangle. Upon completion, the eigenvalues are stored to
the vector l in ascending order, and the eigenvectors U , if requested, overwrite matrix
A such that vector element lj contains the eigenvalue corresponding to the eigenvec-
tor stored in the jth column of U . If eigenvectors are not requested, then the triangle
specified by uplo is destroyed.

Returns: FLA SUCCESS if the operation is successful; otherwise, k is returned, where k is the number
of off-diagonal elements of the intermediate tridiagonal matrix that failed to converge.

Imp. Notes: FLA Hevd external() performs its computation by calling an external implementation
of the LAPACK routines ?heev()/?syev(). The algorithmic variants employed by
these routines, as well as any blocksizes used by subroutines of ?heev()/?syev(), are
implementation-dependent.

Caveats: FLA Hevd external() is available only if external LAPACK interfaces were enabled at
configure-time.

Constraints:
• The numerical datatype of A must be floating-point and must not be FLA CONSTANT.

• The numerical datatype of l must be real and must not be FLA CONSTANT.

• The precision of the datatype of l must be equal to that of A.

• l must be a contiguously-stored vector of length n, where A is n× n.

Arguments:
jobz – Indicates whether only eigenvalues or both eigenvalues and eigenvec-

tors are computed.
uplo – Indicates whether the lower or upper triangle of A is read during the

operation.
A – An FLA Obj representing matrix A.
l – An FLA Obj representing vector l.

248 5. User-level Application Programming Interfaces

FLA_Error FLA_Svd_external(FLA_Svd_type jobu, FLA_Svd_type jobv, FLA_Obj A, FLA_Obj s,

FLA_Obj U, FLA_Obj V);

Purpose: Perform a singular value decomposition (svd):

A → UΣV H

where Σ is an m × n diagonal matrix whose elements contain the singular values of A,
U is an m ×m matrix whose columns contain the left singular vectors of A, and V is
an n × n matrix whose rows of V contain the right singular vectors of A. The jobu

and jobv arguments determine if (and how many of) the left and right singular vectors,
respectively, are computed and where they are stored. The jobu and jobv arguments
accept the following values:

• FLA SVD VECTORS ALL. For jobu: compute all m columns of U , storing the result
in U . For jobv: compute all n columns of V , storing the result in V .

• FLA SVD VECTORS MIN COPY. For jobu: compute the first min(m,n) columns of U
and store them in U . For jobv: compute the first min(m,n) columns of V and
store them in V .

• FLA SVD VECTORS MIN OVERWRITE. For jobu: compute the first min(m,n) columns
of U and store them in A. For jobv: compute the first min(m,n) columns
of V and store them in A. Note that jobu and jobv cannot both be
FLA SVD VECTORS MIN OVERWRITE.

• FLA SVD VECTORS NONE. For jobu: no columns of U are computed. For jobv: no
columns of V are computed.

Upon completion, the min(m,n) singular values of A are stored to s, sorted in
descending order and singular vectors, if computed, are stored to either A or U
and V , depending on the values of jobu and jobv. If neither jobu nor jobv is
FLA SVD VECTORS MIN OVERWRITE, then A is destroyed.

Returns: FLA SUCCESS if the operation is successful; otherwise, k is returned, where k is the number
of superdiagonal elements of the intermediate bidiagonal matrix that failed to converge.

Notes: If right singular vectors are requested (ie: jobv is not FLA SVD VECTORS NONE) then V H

is actually stored rather than V .

Imp. Notes: FLA Svd external() performs its computation by calling an external implementation
of the LAPACK routines ?gesvd()/?gesvd(). The algorithmic variants employed by
these routines, as well as any blocksizes used by subroutines of ?gesvd()/?gesvd(), are
implementation-dependent.

Caveats: FLA Svd external() is available only if external LAPACK interfaces were enabled at
configure-time.

Constraints:
• The numerical datatypes of A, U , and V must be identical and floating-point, and

must not be FLA CONSTANT.

• The numerical datatype of s must be real and must not be FLA CONSTANT.

• The precision of the datatype of s must be equal to that of A.

• e must be a contiguously-stored vector of length min(m,n), where A is m× n.

• U and V must be square.

• The order of U and the order of V must be equal to the the number of rows in A and
the number of columns in A, respectively.

Arguments:
jobu – Indicates whether the left singular vectors are computed, how many

are computed, and where they are stored.
jobv – Indicates whether the right singular vectors are computed, how many

are computed, and where they are stored.
A – An FLA Obj representing matrix A.
s – An FLA Obj representing vector s.
U – An FLA Obj representing matrix U .
V – An FLA Obj representing matrix V .

5.8. LAPACK compatibility (lapack2flame) 249

5.7.3 LAPACK-related utility functions

void FLA_Apply_pivots_unb_external(FLA_Side side, FLA_Trans trans, FLA_Obj p, FLA_Obj A);

Purpose: Apply a permutation matrix P (or PT) from either the left or the right to a matrix A.
The permutation matrix P , which is not explicitly formed, is encoded by the integer
values stored in the pivot vector p.

Notes: The pivot vector p must contain pivot values that conform to libflame pivot index-
ing. If the pivot vector was filled using an LAPACK routine, it must first be con-
verted to libflame pivot indexing with FLA Shift pivots to() before it may be used
with FLA Apply pivots unb external(). Please see the description for FLA LU piv()

in Section 5.6.2 for details on the differences between LAPACK-style pivot vectors and
libflame pivot vectors.

Constraints:
• The numerical datatype of A must be floating-point, and must not be FLA CONSTANT.

• The numerical datatype of p must be integer, and must not be FLA CONSTANT.

Imp. Notes: This function uses an external implementation of the LAPACK routine ?laswp().

Caveats: FLA Apply pivots unb external() is only implemented for the case where side is left
and trans is FLA NO TRANSPOSE.

Caveats: FLA Apply pivots unb external() is available only if external LAPACK interfaces were
enabled at configure-time.

Arguments:
side – Indicates whether the permutation matrix P is applied from the left

or the right.
trans – Indicates whether the operation proceeds as if the permutation matrix

P were transposed.
p – An FLA Obj representing vector p.
A – An FLA Obj representing matrix A.

5.8 LAPACK compatibility (lapack2flame)

As part of the libflame package we provide an LAPACK compatibility layer, which we call lapack2flame,
that allows the user to take advantage of some of the performance benefits of libflame without rewriting
their code to use the native FLAME/C API. More specifically, lapack2flame consists of interfaces that
map LAPACK routine invocations to their corresponding libflame implementations. For example, linking
your application to an lapack2flame-enabled build of libflame would cause any invocation of dpotrf()
to invoke the Cholesky factorization implemented by FLA Chol(). The amount of overhead incurred when
interfacing to libflame via this compatibility layer is typically small.8 Much of this overhead stems from
needing to initialize and finalize the library within each LAPACK interface routine implementation. If the
user initializes libflame a priori, the overhead incurred within the LAPACK interface routine is usually
much lower. That said, even in under this ideal usage scenario, the overhead may still be noticeable for very
small matrices (ie: those smaller than approximately 100× 100).

8 There are, however, operations for which the overhead is noticeable even at larger problem sizes. This typically is due
to libflame needing to recompute intermediate data products that LAPACK routines discard. A noteworthy example is the
routine family ?ormqr/?unmqr and ?ormlq/?unmlq, which apply the orthogonal (or unitary) matrix Q that was previously
computed via a QR or LQ factorization. The QR and LQ factorizations in LAPACK were designed to preserve only the vector
of the τ values that form the individual Householder transformations. By contrast, the corresponding QR and LQ factorizations
in libflame preserve the b× b triangular factors of the block Householder transformations applied at each step of the blocked
factorization algorithm, which are then reused when applying Q or QH . But since the LAPACK interface does not allow the
user to pass in the full triangular factors, the lapack2flame impelementation must re-compute the factors on-the-fly before
continuing with the application of Q.

250 5. User-level Application Programming Interfaces

5.8.1 Supported routines

This section summarizes the LAPACK interfaces currently supported within lapack2flame. Table 5.2 lists
all LAPACK interfaces which map directly to functionality implemented within libflame.

Operation datatypes
supported

LAPACK
interface

Maps to...

Cholesky factorization sdcz ?potrf() FLA Chol()

LU factorization with partial row pivoting sdcz ?getrf() FLA LU piv()

QR factorization sdcz ?geqrf() FLA QR()

LQ factorization sdcz ?gelqf() FLA LQ()

Apply Q or QH from a QR factorization sdcz ?ormqr()

?unmqr()

FLA Apply Q UT()

Apply Q or QH from an LQ factorization sdcz ?ormlq()

?unmlq()

FLA Apply Q UT()

Triangular matrix inversion sdcz ?trtri() FLA Trinv()

SPD/HPD matrix inversion sdcz ?potri() FLA Trinv(); FLA Ttmm()

Triangular-transpose matrix multiply sdcz ?lauum() FLA Ttmm()

Triangular Sylvester equation solve sdcz ?trsyl() FLA Sylv()

Table 5.2: A list of LAPACK interfaces supported directly by the lapack2flame compatibility layer.

Bibliography

[1] BLAS (Basic Linear Algebra Subprograms). http://www.netlib.org/blas/, 2008.

[2] GNU Octave. http://www.gnu.org/software/octave/, 2008.

[3] LAPACK – Linear Algebra PACKage. http://www.netlib.org/lapack/, 2008.

[4] Sage. http://www.sagemath.org/, 2008.

[5] The ScaLAPACK Project. http://www.netlib.org/scalapack/, 2008.

[6] R. C. Agarwal and F. G. Gustavson. Vector and parallel algorithms for Cholesky factorization on IBM
3090. In Supercomputing ’89: Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages
225–233, New York, NY, USA, 1989. ACM Press.

[7] Emmanuel Agullo, Jim Demmel, Jack Dongarra, Bilel Hadri, Jakub Kurzak, Julien Langou, Hatem
Ltaief, Piotr Luszczek, and Stanimire Tomov. Numerical linear algebra on emerging architectures: The
PLASMA and MAGMA projects. Journal of Physics: Conference Series, 180:012037 (5pp), 2009.

[8] Philip Alpatov, Greg Baker, Carter Edwards, John Gunnels, Greg Morrow, James Overfelt, Robert
van de Geijn, and Yuan-Jye J. Wu. PLAPACK: Parallel linear algebra package – design overview. In
Proceedings of SC97, 1997.

[9] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[10] Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert A. van de
Geijn. The science of deriving dense linear algebra algorithms. ACM Trans. Math. Soft., 31(1):1–26,
March 2005.

[11] Paolo Bientinesi, Brian Gunter, and Robert A. van de Geijn. Families of algorithms related to the
inversion of a symmetric positive definite matrix. ACM Trans. Math. Soft., 35(1).

[12] Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Representing linear alge-
bra algorithms in code: The FLAME application programming interfaces. ACM Trans. Math. Soft.,
31(1):27–59, March 2005.

[13] Alfredo Buttari, Julien Langou, Jakub Kurzak, , and Jack Dongarra. Parallel tiled QR factorization
for multicore architectures. LAPACK Working Note 190 UT-CS-07-598, University of Tennessee, July
2007.

[14] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra. A class of parallel tiled linear
algebra algorithms for multicore architectures. LAPACK Working Note 190 UT-CS-07-600, University
of Tennessee, September 2007.

[15] Ernie Chan, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de Geijn. SuperMa-
trix out-of-order scheduling of matrix operations for SMP and multi-core architectures. In SPAA ’07:
Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures, pages
116–125, San Diego, CA, USA, June 9-11 2007a. ACM.

251

252 BIBLIOGRAPHY

[16] Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı,
and Robert van de Geijn. SuperMatrix: A multithreaded runtime scheduling system for algorithms-
by-blocks. In ACM SIGPLAN 2008 symposium on Principles and practices of parallel programming
(PPoPP’08), pages 123–132, 2008.

[17] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScaLAPACK: A scalable linear algebra library for
distributed memory concurrent computers. In Proceedings of the Fourth Symposium on the Frontiers of
Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[18] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear
algebra subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[19] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. An extended set of
FORTRAN basic linear algebra subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[20] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo Kagstrom. Recursive blocked algorithms and
hybrid data structures for dense matrix library software. SIAM Review, 46(1):3–45, 2004.

[21] Kazushige Goto and Robert A. van de Geijn. On reducing TLB misses in matrix multiplication. Tech-
nical Report CS-TR-02-??, Department of Computer Sciences, The University of Texas at Austin, 2002.
in preparation.

[22] Kazushige Goto and Robert A. van de Geijn. Anatomy of a high-performance matrix multiplication.
ACM Trans. Math. Soft., 34(3):12, May 2008. Article 12, 25 pages.

[23] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. Flame: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[24] John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance linear algebra
libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Architecture of Scientific
Software, pages 193–210. Kluwer Academic Press, 2001.

[25] Fred G. Gustavson, Lars Karlsson, and Bo Kagstrom. Three algorithms for Cholesky factorization on
distributed memory using packed storage. In Applied Parallel Computing. State of the Art in Scientific
Computing, pages 550–559. Springer Berlin / Heidelberg, 2007.

[26] Thierry Joffrain, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Rapid development of high-
performance out-of-core solvers. In Proceedings of PARA 2004, number 3732 in LNCS, pages 413–422.
Springer-Verlag Berlin Heidelberg, 2005.

[27] Argonne National Laboratory. Portable, Extensible Toolkit for Scientific computation.
http://acts.nersc.gov/petsc/, 2008.

[28] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms for
Fortran usage. ACM Trans. Math. Soft., 5(3):308–323, Sept. 1979.

[29] Tze Meng Low and Robert van de Geijn. An api for manipulating matrices stored by blocks. Technical
Report TR-2004-15, Department of Computer Sciences, The University of Texas at Austin, May 2004.

[30] National Instruments. LabVIEW. http://nationalinstruments.com/labview/, 2008.

[31] Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on parallel
matrix inversion. SIAM J. Sci. Comput., 22(5):1762–1771, 2001.

[32] Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Solving
dense linear algebra problems on platforms with multiple hardware accelerators. In ACM SIGPLAN
2009 symposium on Principles and practices of parallel programming (PPoPP’08), 2009.

[33] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Alfredo Remon, and Robert A. van de Geijn. An
algorithm-by-blocks for SuperMatrix band Cholesky factorization. In Proceedings of the 8th Interna-
tional Meeting on High Performance Computing for Computational Science, June 2008.

BIBLIOGRAPHY 253

[34] Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee, and
Ernie Chan. Programming matrix algorithms-by-blocks for thread-level parallelism. ACM Trans. Math.
Soft. accepted.

[35] Texas Advanced Computing Center. Software and Tools. http://www.tacc.utexas.edu/resources/software/,
2008.

[36] The MathWorks. MATLAB. http://www.mathworks.com/products/matlab/, 2008.

[37] Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

[38] Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming Matrix Computa-
tions. www.lulu.com/contents/contents/1911788/, 2008.

[39] Field G. Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de Geijn. Scalable parallelization
of FLAME code via the workqueuing model. ACM Trans. Math. Soft., 34(2):1–29, 2008.

Index

libflame

features, 1
for GNU/Linux and UNIX
configure options, 12
compiling, 20
configuration, 12
hardware support, 10
installing, 22
linking against, 22
linking with lapack2flame , 24
running configure, 19
software requirements, 9
source code, 11

for Microsoft Windows
compiling, 30
configuration, 28
hardware support, 26
installing, 32
linking against, 34
running configure.cmd, 30
software requirements, 25
source code, 26

license, 10, 26
obtaining, 11
version numbering, 11, 26

API
section descriptions, 48

constant
types, see types
values, see types

FLAME/C
notational conventions, 46
object concepts, 49
terminology, 45

FLAME/C functions
FLA Abort(), 81
FLA Absolute square(), 70
FLA Absolute value(), 70
FLA Accum T UT(), 196
FLA Add to diag(), 68
FLA Amax external(), 214
FLA Amax(), 115

FLA Apply diag matrix(), 191
FLA Apply H2 UT(), 197
FLA Apply pivots(), 159
FLA Apply pivots unb external(), 249
FLA Apply Q blk external(), 244
FLA Apply QUD UT create workspace(), 206
FLA Apply QUD UT(), 181
FLA Apply Q UT create workspace(), 205
FLA Apply Q UT(), 179
FLA Asum external(), 214
FLA Asum(), 116
FLA Axpy buffer to object(), 61
FLA Axpy external(), 214
FLA Axpy(), 116
FLA Axpy object to buffer(), 62
FLA Axpyrt external(), 215
FLA Axpyrt(), 118
FLA Axpys external(), 216
FLA Axpys(), 119
FLA Axpyt external(), 215
FLA Axpyt(), 117
FLA Bidiag UT create T(), 204
FLA Bidiag UT(), 178
FLA Bidiag UT realify(), 205
FLA Bidiag UT recover tau(), 204
FLA Check error level(), 80
FLA Check error level set(), 80
FLA Chol blk external(), 238
FLA Chol(), 154
FLA Chol solve(), 155
FLA Chol unb external(), 238
FLA Clock(), 82
FLA Conjugate(), 71
FLA Conjugate r(), 71
FLA Cont with 1x3 to 1x2(), 86
FLA Cont with 3x1 to 2x1(), 85
FLA Cont with 3x3 to 2x2(), 87
FLA Copy buffer to object(), 59
FLA Copy external(), 216
FLA Copy(), 119
FLA Copy object to buffer(), 60
FLA Copyr external(), 216
FLA Copyr(), 120
FLA Copyrt external(), 217

254

INDEX 255

FLA Copyrt(), 120
FLA Copyt external(), 217
FLA Copyt(), 121
FLA Dotc external(), 218
FLA Dotc(), 122
FLA Dotcs external(), 219
FLA Dotcs(), 124
FLA Dot external(), 218
FLA Dot(), 122
FLA Dots external(), 219
FLA Dots(), 123
FLA Dot2cs external(), 220
FLA Dot2cs(), 126
FLA Dot2s external(), 220
FLA Dot2s(), 125
FLA Eig gest blk external(), 246
FLA Eig gest(), 186
FLA Eig gest unb external(), 246
FLA Finalize(), 50
FLA Form perm matrix(), 192
FLA Gemm external(), 231
FLA Gemm(), 143
FLA Gemvc external(), 224
FLA Gemvc(), 131
FLA Gemv external(), 223
FLA Gemv(), 130
FLA Gerc external(), 225
FLA Gerc(), 132
FLA Ger external(), 224
FLA Ger(), 132
FLA Hemm external(), 232
FLA Hemm(), 144
FLA Hemvc external(), 226
FLA Hemvc(), 134
FLA Hemv external(), 225
FLA Hemv(), 133
FLA Herc external(), 227
FLA Herc(), 135
FLA Her external(), 226
FLA Herk external(), 232
FLA Herk(), 145
FLA Hermitianize(), 79
FLA Her(), 135
FLA Her2c external(), 228
FLA Her2c(), 137
FLA Her2 external(), 227
FLA Her2k external(), 233
FLA Her2k(), 146
FLA Her2(), 136
FLA Hess blk external(), 243
FLA Hess unb external(), 243
FLA Hess UT create T(), 201
FLA Hess UT(), 176
FLA Hess UT recover tau(), 202

FLA Hevd external(), 247
FLA Hevd(), 189
FLA Househ2s UT(), 194
FLA Househ3UD UT(), 195
FLA Househ2 UT(), 193
FLA Initialized(), 50
FLA Init(), 50
FLA Invert(), 72
FLA Inv scalc external(), 221
FLA Inv scalc(), 127
FLA Inv scal external(), 221
FLA Inv scal(), 126
FLA LQ blk external(), 242
FLA LQ unb external(), 242
FLA LQ UT create T(), 199
FLA LQ UT form Q(), 201
FLA LQ UT(), 167
FLA LQ UT recover tau(), 200
FLA LQ UT solve(), 168
FLA LU nopiv(), 156
FLA LU piv blk external(), 240
FLA LU piv(), 157
FLA LU piv solve(), 158
FLA LU piv unb external(), 240
FLA Lyap(), 188
FLA Max abs value(), 72
FLA Max elemwise diff(), 73
FLA Memory leak counter set(), 81
FLA Merge 1x2(), 88
FLA Merge 2x1(), 88
FLA Merge 2x2(), 89
FLA Mult add(), 73
FLA Negate(), 73
FLA Norm frob(), 75
FLA Norm inf(), 74
FLA Norm1(), 74
FLA Nrm2 external(), 221
FLA Nrm2(), 127
FLA Obj attach buffer(), 57
FLA Obj base buffer(), 83
FLA Obj base length(), 82
FLA Obj base width(), 83
FLA Obj buffer at view(), 57
FLA Obj buffer is null(), 67
FLA Obj col offset(), 82, 107
FLA Obj col stride(), 58
FLA Obj create buffer(), 56
FLA Obj create conf to(), 52
FLA Obj create copy of(), 52
FLA Obj create(), 51
FLA Obj create without buffer(), 55
FLA Obj datatype(), 53
FLA Obj datatype proj to complex(), 63
FLA Obj datatype proj to real(), 62

256 INDEX

FLA Obj datatype size(), 83
FLA Obj elem size(), 84
FLA Obj elemtype(), 83
FLA Obj equals(), 65
FLA Obj extract complex scalar(), 66
FLA Obj extract imag part(), 66
FLA Obj extract real part(), 66
FLA Obj extract real scalar(), 66
FLA Obj free buffer(), 56
FLA Obj free(), 53
FLA Obj free without buffer(), 56
FLA Obj fshow(), 55
FLA Obj has zero dim(), 65
FLA Obj is complex(), 64
FLA Obj is conformal to(), 65
FLA Obj is constan(), 63
FLA Obj is double precision(), 64
FLA Obj is floating point(), 63
FLA Obj is int(), 63
FLA Obj is(), 65
FLA Obj is real(), 63
FLA Obj is scalar(), 64
FLA Obj is single precision(), 64
FLA Obj is vector(), 64
FLA Obj length(), 53
FLA Obj max dim(), 54
FLA Obj min dim(), 53
FLA Obj row offset(), 82, 106
FLA Obj row stride(), 58
FLA Obj set imag part(), 69
FLA Obj set real part(), 69
FLA Obj show(), 54
FLA Obj vector dim(), 54
FLA Obj vector inc(), 54
FLA Obj width(), 53
FLA Part 1x2(), 85
FLA Part 2x1(), 84
FLA Part 2x2(), 86
FLA Print message(), 81
FLA QR blk external(), 241
FLA QR unb external(), 241
FLA QR UT create T(), 198
FLA QR UT form Q(), 199
FLA QR UT(), 163
FLA QR UT recover tau(), 198
FLA QR UT solve(), 164
FLA Random herm matrix(), 77
FLA Random matrix(), 76
FLA Random spd matrix(), 78
FLA Random symm matrix(), 77
FLA Random tri matrix(), 78
FLA Random unitary matrix(), 79
FLA Part 1x2 to 1x3(), 85
FLA Part 2x1 to 3x1(), 84

FLA Part 2x2 to 3x3(), 87
FLA Scalc external(), 222
FLA Scalc(), 128
FLA Scale diag(), 69
FLA Scal elemwise(), 75
FLA Scal external(), 222
FLA Scal(), 128
FLA Scalr external(), 222
FLA Scalr(), 129
FLA Set diag(), 68
FLA Set(), 67
FLA Setr(), 68
FLA Set to identity(), 68
FLA Shift diag(), 69
FLA Shift pivots to(), 191
FLA SPDinv blk external(), 239
FLA SPDinv(), 185
FLA Sqrt(), 76
FLA Submatrix at(), 67
FLA Svd external(), 248
FLA Svd(), 190
FLA Swap external(), 222
FLA Swap(), 129
FLA Swapt external(), 223
FLA Swapt(), 129
FLA Sylv blk external(), 245
FLA Sylv(), 187
FLA Sylv unb external(), 245
FLA Symmetrize(), 79
FLA Symm external(), 233
FLA Symm(), 147
FLA Symv external(), 228
FLA Symv(), 138
FLA Syr external(), 228
FLA Syrk external(), 233
FLA Syrk(), 148
FLA Syr(), 138
FLA Syr2 external(), 229
FLA Syr2k external(), 234
FLA Syr2k(), 149
FLA Syr2(), 139
FLA Transpose(), 71
FLA Triangularize(), 80
FLA Tridiag blk external(), 243
FLA Tridiag unb external(), 243
FLA Tridiag UT create T(), 202
FLA Tridiag UT(), 177
FLA Tridiag UT realify(), 203
FLA Tridiag UT recover tau(), 203
FLA Trinv blk external(), 238
FLA Trinv(), 184
FLA Trinv unb external(), 238
FLA Trmm external(), 234
FLA Trmm(), 150

INDEX 257

FLA Trmmsx external(), 235
FLA Trmmsx(), 151
FLA Trmv external(), 229
FLA Trmv(), 139
FLA Trmvsx external(), 230
FLA Trmvsx(), 140
FLA Trsm external(), 236
FLA Trsm(), 152
FLA Trsmsx external(), 237
FLA Trsmsx(), 153
FLA Trsv external(), 230
FLA Trsv(), 141
FLA Trsvsx external(), 231
FLA Trsvsx(), 142
FLA Ttmm blk external(), 239
FLA Ttmm(), 183
FLA Ttmm unb external(), 239
FLA UDdate UT create T(), 200
FLA UDdate UT(), 171
FLA UDdate UT solve(), 173
FLA UDdate UT update rhs(), 172

FLASH
description, 89
interoperability with FLAME/C, 91
terminology, 90

FLASH functions
FLA Part 2x2(), 109
FLASH Apply QUD UT inc create workspace(),

213
FLASH Apply QUD UT inc(), 182
FLASH Apply Q UT create workspace(), 205
FLASH Apply Q UT inc create workspace(),

213
FLASH Apply Q UT inc(), 180
FLASH Apply Q UT(), 179
FLASH Axpy(), 116
FLASH Axpyt(), 117
FLASH CAQR UT inc create hier matrices(),

211
FLASH CAQR UT inc(), 169
FLASH CAQR UT inc solve(), 170
FLASH Chol(), 154
FLASH Chol solve(), 155
FLASH Copy buffer to hier(), 98
FLASH Copy flat to hier(), 99
FLASH Copy hier to buffer(), 99
FLASH Copy hier to flat(), 99
FLASH Copy(), 119
FLASH Copyt(), 121
FLASH Eig gest(), 186
FLASH FS incpiv(), 162
FLASH Gemm(), 143
FLASH Gemv(), 130
FLASH Hemm(), 144

FLASH Herk(), 145
FLASH Her2k(), 146
FLASH LQ UT create hier matrices(), 210
FLASH LQ UT(), 167
FLASH LQ UT solve(), 168
FLASH LU incpiv create hier matrices(), 207
FLASH LU incpiv(), 160
FLASH LU incpiv solve(), 161
FLASH LU nopiv(), 156
FLASH LU piv(), 157
FLASH LU piv solve(), 158
FLASH Lyap(), 188
FLASH Max elemwise diff(), 73
FLASH Norm1(), 74
FLASH Obj attach buffer(), 103
FLASH Obj base scalar length(), 106
FLASH Obj base scalar width(), 106
FLASH Obj blocksizes(), 105
FLASH Obj create conf to(), 94
FLASH Obj create copy of(), 94
FLASH Obj create ext(), 93
FLASH Obj create flat conf to hier(), 97
FLASH Obj create flat copy of hier(), 98
FLASH Obj create hier conf to flat ext(),

96
FLASH Obj create hier conf to flat(), 95
FLASH Obj create hier copy of flat ext(),

97
FLASH Obj create hier copy of flat(), 96
FLASH Obj create(), 92
FLASH Obj create without buffer ext(), 102
FLASH Obj create without buffer(), 101
FLASH Obj datatype(), 104
FLASH Obj depth(), 105
FLASH Obj flatten(), 100
FLASH Obj free(), 94
FLASH Obj free without buffer(), 102
FLASH Obj hierarchify(), 100
FLASH Obj scalar length(), 104
FLASH Obj scalar max dim(), 106
FLASH Obj scalar min dim(), 105
FLASH Obj scalar width(), 104
FLASH Obj show(), 110
FLASH Part create 1x2(), 108
FLASH Part create 2x1(), 107
FLASH Part free 1x2(), 108
FLASH Part free 2x1(), 107
FLASH Part free 2x2(), 109
FLASH QR UT create hier matrices(), 208
FLASH QR UT inc create hier matrices(), 209
FLASH QR UT inc(), 165
FLASH QR UT inc solve(), 166
FLASH QR UT(), 163
FLASH QR UT solve(), 164

258 INDEX

FLASH Random matrix(), 76
FLASH Random spd matrix(), 78
FLASH Shift diag(), 69
FLASH SPDinv(), 185
FLASH Sylv(), 187
FLASH Symm(), 147
FLASH Syrk(), 148
FLASH Syr2k(), 149
FLASH Trinv(), 184
FLASH Trmm(), 150
FLASH Trsm(), 152
FLASH Trsv(), 141
FLASH Ttmm(), 183
FLASH UDdate UT inc create hier matrices(),

212
FLASH UDdate UT inc(), 174
FLASH UDdate UT inc solve(), 175
FLASH UDdate UT inc update rhs(), 175

List of Contributors, v

routines
FLAME/C, see FLAME/C functions
FLASH, see FLASH functions
SuperMatrix, see SuperMatrix functions

SuperMatrix
description, 110
integration with FLASH, 115
preconditions for enabling, 115

SuperMatrix functions
FLASH Queue begin(), 112
FLASH Queue disable gpu(), 114
FLASH Queue disable(), 111
FLASH Queue enable gpu(), 114
FLASH Queue enable(), 111
FLASH Queue end(), 112
FLASH Queue get data affinity(), 114
FLASH Queue get enabled gpu(), 114
FLASH Queue get enabled(), 111
FLASH Queue get gpu num blocks() , 114
FLASH Queue get num threads(), 112
FLASH Queue get sorting(), 113
FLASH Queue get verbose output(), 113
FLASH Queue set data affinity(), 113
FLASH Queue set gpu num blocks() , 114
FLASH Queue set num threads(), 112
FLASH Queue set sorting(), 113
FLASH Queue set verbose output(), 112

types
constant-valued, 47

Appendix A

FLAME Project Related Publications

Many of following publications can be found on-line at

http://www.cs.utexas.edu/users/flame/publications/

A.1 Books

B1 Robert A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

B2 Robert A. van de Geijn and Enrique S. Quintana-Ort́ı. The Science of Programming Matrix Compu-
tations. www.lulu.com/contents/1911788/, 2008.

A.2 Dissertations

D1 John A. Gunnels. A Systematic Approach to the Design and Analysis of Linear Algebra Algorithms.
The University of Texas at Austin, Department of Computer Sciences. Technical Report TR-01-44.
December 2001.

D2 Paolo Bientinesi. Mechanical Derivation and Systematic Analysis of Correct Linear Algebra Algo-
rithms. The University of Texas at Austin, Department of Computer Sciences. August 2006.

D3 Jack Poulson. Formalized Parallel Dense Linear Algebra and its Application to the Generalized Eigen-
value Problem. Masters Thesis. The University of Texas at Austin, Department of Aerospace Engi-
neering. May 2009. (Supervised by Prof. Jeffrey K. Bennighof)

A.3 Journal Articles

J1 Enrique S. Quintana, Gregorio Quintana, Xiaobai Sun, and Robert van de Geijn. A note on parallel
matrix inversion. SIAM Journal on Scientific Computing, 22(5):1762–1771, 2001.

J2 John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
Linear Algebra Methods Environment. ACM Transactions on Mathematical Software, 27(4):422-455,
December 2001.

J3 Enrique S. Quintana-Ort́ı and Robert van de Geijn. Formal Derivation of Algorithms: The Triangular
Sylvester Equation. ACM Transactions on Mathematical Software, (29) 2, June 2003.

J4 Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert van de
Geijn. The Science of Deriving Dense Linear Algebra Algorithms. ACM Transactions on Mathematical
Software, 31(1):1-26, March 2005.

259

260 A. FLAME Project Related Publications

J5 Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Representing Linear Algebra
Algorithms in Code: The FLAME APIs. ACM Transactions on Mathematical Software, 31(1):27-59,
March 2005.

J6 Brian Gunter and Robert van de Geijn. Parallel Out-of-Core Computation and Updating of the QR
Factorization. ACM Transactions on Mathematical Software, 32(1):60-78, March 2005.

J7 Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn, and Field Van
Zee. On Accumulating Householder Transformations. ACM Transactions on Mathematical Software,
32(2):169-179, 2006.

J8 Gregorio Quintana-Ort́ı and Robert van de Geijn. Improving the Performance of Reduction to Hes-
senberg Form. ACM Transactions on Mathematical Software, 32(2):180-194, 2006.

J9 Kazushige Goto and Robert A. van de Geijn. Anatomy of a High-Performance Matrix Multiplication.
ACM Transactions on Mathematical Software, 34(2) Article 12, 25 pages, 2008.

J10 Field G. Van Zee, Paolo Bientinesi, Tze Meng Low, and Robert A. van de Geijn. Scalable Paralleliza-
tion of FLAME Code via the Workqueuing Model. ACM Transactions on Mathematical Software,
34(2):10:1–10:29, March 2008.

J11 Paolo Bientinesi, Brian Gunter, and Robert van de Geijn. Families of Algorithms Related to the
Inversion of a Symmetric Positive Definite Matrix ACM Transactions on Mathematical Software,
35(1), p. 1–22, 2008.

J12 Kazushige Goto and Robert A. van de Geijn. High-Performance Implementation of the Level-3 BLAS.
ACM Transactions on Mathematical Software, 35(1) Article 4, 14 pages, 2009.

J13 Enrique Quintana-Ort́ı and Robert van de Geijn. Updating an LU Factorization with Pivoting. ACM
Transactions on Mathematical Software, 35(2) Article 11, 16 pages, 2009.

J14 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Robert A. van de Geijn, Field G. Van Zee, and
Ernie Chan. Programming Matrix Algorithms-by-Blocks for Thread-Level Parallelism. ACM Trans-
actions on Mathematical Software, 36(3):14:1–14:26, 2009.

J15 Field G. Van Zee, Ernie Chan, Robert van de Geijn, Enrique S. Quintana-Ort́ı, and Gregorio Quintana-
Ort́ı. Introducing: The libflame Library for Dense Matrix Computations. Computing in Science and
Engineering, accepted.

A.4 Conference Papers

C1 John A. Gunnels and Robert A. van de Geijn. Formal methods for high-performance linear algebra
libraries. In Ronald F. Boisvert and Ping Tak Peter Tang, editors, The Architecture of Scientific
Software, pages 193–210. Kluwer Academic Press, 2001. Proceedings of Working Conference on
Sofware Architectures for Scientific Computing Applications (IFIP WG 2.5 WoCo 8).

C2 John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. A family of high-performance matrix
multiplication algorithms. In Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S.
Renner, and C.J. Kenneth Tan, editors, Computational Science - ICCS 2001, Part I, Lecture Notes in
Computer Science 2073, pages 51–60. Springer-Verlag, 2001.

C3 John A. Gunnels, Daniel S. Katz, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Fault–
tolerant high–performance matrix multiplication: Theory and practice. In Proceedings of the Interna-
tional Conference for Dependable Systems and Networks (DSN-2001), p. 47–56, July 2-4, 2001.

C4 Paolo Bientinesi, John Gunnels, Fred Gustavson, Greg Henry, Margaret Myers, Enrique Quintana-
Ort́ı, and Robert A. van de Geijn. Rapid Development of High-Performance Linear Algebra Libraries.
PARA 2004, LNCS 3732, p. 376–384, 2005.

A.4. Conference Papers 261

C5 Paolo Bientinesi, Sergey Kolos, and Robert A. van de Geijn. Automatic Derivation of Linear Algebra
Algorithms with Application to Control Theory. PARA 2004, LNCS 3732, p. 385–394, 2005.

C6 Thierry Joffrain, Enrique S. Quintana-Ort́ı, and Robert A. van de Geijn. Rapid Development of
High-Performance Out-of-Core Solvers. PARA 2004, LNCS 3732, p. 413–422, 2005.

C7 Tze Meng Low, Robert van de Geijn, and Field Van Zee. Extracting SMP Parallelism for Dense Linear
Algebra Algorithms from High-Level Specifications. Proceedings of 2005 ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, 2005.

C8 Ernie Chan, Enrique Quintana-Ort́ı, Gregorio Quintana-Ort́ı, and Robert van de Geijn. SuperMatrix
Out-of-Order Scheduling of Matrix Operations for SMP and Multi-Core Architectures. SPAA’07:
Proceedings of the Nineteenth ACM Symposium on Parallelism in Algorithms and Architectures, p.
116–125. 2007.

C9 Bryan Marker, Field Van Zee, Kazushige Goto, Gregorio Quintana-Ort́ı, and Robert van de Geijn.
Toward Scalable Matrix Multiply on Multithreaded Architectures. Proceedings of European Conference
on Parallel and Distributed Computing, p. 748–757, Rennes, France, August 2007.

C10 Ernie Chan, Field G. Van Zee, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı, Robert van de Geijn.
Satisfying your Dependencies with SuperMatrix. Proceedings of IEEE Cluster Computing 2007, p. 91–
99, Austin, Texas, September 2007.

C11 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Ernie Chan, Field G. Van Zee, and Robert A.
van de Geijn. Scheduling of QR factorization algorithms on SMP and multi-core architectures. Pro-
ceedings of the 16th Euromicro International Conference on Parallel, Distributed and Network-Wased
Processing, Toulouse, France, February 2008.

C12 Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Ort́ı,
and Robert van de Geijn. SuperMatrix: A Multithreaded Runtime Scheduling System for Algorithms-
by-Blocks. Proceedings of 2008 ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, p. 123–132, Salt Lake City, Utah, February 2008.

C13 Jeff Diamond, Behnam Robatmili, Stephen W. Keckler, Robert van de Geijn, Kazushige Goto, Doug
Burger. High Performance Dense Linear Algebra on a Spatially Distributed Processor. Proceedings
of 2008 ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming, Salt Lake
City, Utah, February 2008.

C14 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Ernie Chan, Robert van de Geijn, and Field G.
Van Zee. Design of Scalable Dense Linear Algebra Libraries for Multithreaded Architectures: the LU
Factorization. Proceedings of the Workshop on Multithreaded Architectures and Applications, Miami,
Florida, April 2008.

C15 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, Alfredo Remon, and Robert A. van de Geijn. An
Algorithm-by-Blocks for SuperMatrix Band Cholesky Factorization. Proceedings of the 8th Interna-
tional Meeting on High Performance Computing for Computational Science, Toulouse, France, June
2008.

C16 Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Ort́ı, Robert van de Geijn. Solving
Dense Linear Systems on Platforms with Multiple Hardware Accelerators. Proceedings of 2009 ACM
SIGPLAN Symposium on Principles and Practices of Parallel Programming, Raleigh, North Carolina,
February 2009.

C17 Robert van de Geijn. Beautiful Parallel Code: Evolution vs. Intelligent Design. Supercomputing 2008
Workshop on Node Level Parallelism for Large Scale Supercomputers, Austin, Texas, November 2008.

C18 Maŕıa Jesús Zafont, Alberto Mart́ın, Francisco D. Igual, and Enrique S. Quintana-Ort́ı. Fast De-
velopment of Dense Linear Algebra Codes on Graphics Processors. 14th International Workshop on
High-Level Parallel Programming Models and Supportive Environments, Rome, Italy, 2009.

262 A. FLAME Project Related Publications

C19 Mercedes Marqués, Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Using
Graphics Processors to Accelerate the Solution of Out-of-Core Linear Systems. 8th IEEE International
Symposium on Parallel and Distributed Computing, Lisbon, Portugal, 2009.

C20 Mercedes Marqués, Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, and Robert van de Geijn.
Solving “Large” Dense Matrix Problems on Multi-Core Processors and GPUs. 10th IEEE International
Workshop on Parallel and Distributed Scientific and Engineering Computing (PDSEC’09), Rome, Italy,
2009.

C21 Mercedes Marqués, Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, and Robert van de Geijn.
Out-of-Core Computation of the QR Factorization on Multi-Core Processors. Proceedings of European
Conference on Parallel and Distributed Computing, Delft, The Netherlands, 2009.

A.5 FLAME Working Notes

W1 John Gunnels, Greg Henry, and Robert van de Geijn. Formal Linear Algebra Methods Environment
(FLAME): Overview. FLAME Working Note #1. The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-2000-28. November 2000.

W2 John A. Gunnels, Daniel S. Katz, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. Fault-Tolerant
High-Performance Matrix-Matrix Multiplication, FLAME Working Note #2. The University of Texas
at Austin, Department of Computer Sciences. Technical Report TR-2000-34. December 2000.

W3 John Gunnels and Robert van de Geijn. Developing Linear Algebra Algorithms: A Collection of Class
Projects. FLAME Working Note #3. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-2001-19. May 2001.

W4 John Gunnels, Greg Henry, and Robert van de Geijn. High-Performance Matrix Multiplication Algo-
rithms for Architectures with Hierarchical Memories. FLAME Working Note #4. The University of
Texas at Austin, Department of Computer Sciences. Technical Report TR-2001-22. June 2001.

W5 Enrique S. Quintana-Ort́ı and Robert van de Geijn. Formal Derivation of Algorithms: The Triangular
Sylvester Equation. FLAME Working Note #5. The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-2001-35. Sept. 2001.

W6 John A. Gunnels. A Systematic Approach to the Design and Analysis of Linear Algebra Algorithms.
Ph.D. Dissertation. FLAME Working Note #6, The University of Texas at Austin, Department of
Computer Sciences. Technical Report TR-2001-44. Nov. 2001.

W7 Greg M. Henry. Flexible High-Performance Matrix Multiply via a Self-Modifying Runtime Code.
FLAME Working Note #7. The University of Texas at Austin, Department of Computer Sciences.
Technical Report TR-2001-46. Dec. 2001.

W8 Paolo Bientinesi, John A. Gunnels, Margaret E. Myers, Enrique S. Quintana-Ort́ı, and Robert van de
Geijn. The Science of Deriving Dense Linear Algebra Algorithms. FLAME Working Note #8. The
University of Texas at Austin, Department of Computer Sciences. Technical Report TR-2002-53. Sept.
2002.

W9 Kazushige Goto and Robert van de Geijn. On Reducing TLB Misses in Matrix Multiplication. FLAME
Working Note #9. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-2002-55. Nov. 2002.

W10 Robert A. van de Geijn. Representing Linear Algebra Algorithms in Code: The FLAME API. FLAME
Working Note #10. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-2003-01. Jan. 2003.

A.5. FLAME Working Notes 263

W11 Paolo Bientinesi, Enrique S. Quintana-Ort́ı, and Robert van de Geijn. FLAME@lab: A Farewell to
Indices. FLAME Working Note #11. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-2003-11. April 2003.

W12 Tze Meng Low and Robert van de Geijn. An API for Manipulating Matrices Stored by Blocks. FLAME
Working Note #12. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-2004-15. May 2004.

W13 Thierry Joffrain, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn, and Field Van Zee.
On Accumulating Householder Transformations. FLAME Working Note #13. The University of Texas
at Austin, Department of Computer Sciences. Technical Report TR-2004-43. Oct 2004.

W14 Gregorio Quintana-Ort́ı and Robert van de Geijn. Improving the Performance of Reduction to Hessen-
berg Form. FLAME Working Note #14. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-2004-44. Oct 2004.

W15 Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. Parallelizing FLAME Code with
OpenMP Task Queues. FLAME Working Note #15. The University of Texas at Austin, Department
of Computer Sciences. Technical Report TR-2004-50.

W16 Paolo Bientinesi, Kazushige Goto, Tze Meng Low, Enrique S. Quintana-Ort́ı, Robert van de Geijn,
and Field Van Zee. FLAME 2005 Prospectus: Towards the Final Generation of Dense Linear Algebra
Libraries. FLAME Working Note #16. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-2005-15.

W17 Paolo Bientinesi and Robert van de Geijn. Representing Dense Linear Algebra Algorithms: A Farewell
to Indices. FLAME Working Note #17. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-2006-10.

W18 H. Carter Edwards and Robert A. van de Geijn. Application Interface to Parallel Dense Matrix
Libraries: Just let me solve my problem! FLAME Working Note #18. The University of Texas at
Austin, Department of Computer Sciences. Technical Report TR-2006-15.

W19 Paolo Bientinesi, Brian Gunter, and Robert van de Geijn, Families of Algorithms Related to the
Inversion of a Symmetric Positive Definite Matrix. FLAME Working Note #19. The University of
Texas at Austin, Department of Computer Sciences. Technical Report TR-2006-20.

W20 Kazushige Goto and Robert van de Geijn. High-Performance Implementation of the Level-3 BLAS.
FLAME Working Note #20. The University of Texas at Austin, Department of Computer Sciences.
Technical Report TR-2006-23.

W21 Enrique S. Quintana-Ort́ı and Robert van de Geijn. Updating an LU Factorization with Pivoting.
FLAME Working Note #21. The University of Texas at Austin, Department of Computer Sciences.
Technical Report TR-2006-42.

W22 Ernie Chan, Marcel Heimlich, Avijit Purkayastha, and Robert van de Geijn. Collective Communi-
cation: Theory, Practice, and Experience. FLAME Working Note #22. The University of Texas at
Austin, Department of Computer Sciences. Technical Report TR-06-44. September 26, 2006.

W23 Ernie Chan, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Orti, and Robert van de Geijn. SuperMa-
trix Out-of-Order Scheduling of Matrix Operations for SMP and Multi-Core Architectures. FLAME
Working Note #23. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-06-67. December 18, 2006.

W24 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Orti, Ernie Chan, Field G. Van Zee, and Robert van
de Geijn. Scheduling of QR factorization algorithms on SMP and multi-core architectures. FLAME
Working Note #24. The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-07-37. July 31, 2007.

264 A. FLAME Project Related Publications

W25 Ernie Chan, Field G. Van Zee, Paolo Bientinesi, Enrique S. Quintana-Ort́ı, Gregorio Quintana-Orti,
and Robert van de Geijn. SuperMatrix: A Multithreaded Runtime Scheduling System for Algorithms-
by-Blocks. FLAME Working Note #25. The University of Texas at Austin, Department of Computer
Sciences. Technical Report TR-07-41. August 22, 2007.

W26 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Orti, Ernie Chan, Robert van de Geijn, Field G. Van Zee.
Design and Scheduling of an Algorithm-by-Blocks for LU Factorization on Multithreaded Architectures.
FLAME Working Note #26. The University of Texas at Austin, Department of Computer Sciences.
Technical Report TR-07-50. September 19, 2007.

W27 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Orti, Alfredo Remon, Robert van de Geijn. SuperMatrix
for the Factorization of Band Matrices. FLAME Working Note #27. The University of Texas at Austin,
Department of Computer Sciences. Technical Report TR-07-51. September 24, 2007.

W28 Bryan Marker. On Composing Matrix Multiplication from Kernels. FLAME Working Note #28. The
University of Texas at Austin, Department of Computer Sciences. Report #HR-07-32 (honors thesis).
Spring 2007. 21 pages.

W29 Gregorio Quintana-Ort́ı, Enrique S. Quintana-Orti, Ernie Chan, Field G. Van Zee, and Robert van de
Geijn. Programming Algorithms-by-Blocks for Matrix Computations on Multithreaded Architectures.
FLAME Working Note #29. The University of Texas at Austin, Department of Computer Sciences.
Technical Report TR-08-04. January 15, 2008.

W30 Sergio Barrachina, Maribel Castillo, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ort́ı.
FLAG@lab: An M-script API for Linear Algebra Operations on Graphics Processors. FLAME Work-
ing Note #30. Universidad Jaume I, Depto. de Ingenieria y Ciencia de Computadores. Technical
Report ICC 01-02-2008. February 14, 2008.

W31 Maribel Castillo, Ernie Chan, Francisco D. Igual, Rafael Mayo, Enrique S. Quintana-Ort́ı, Gregorio
Quintana-Orti, Robert van de Geijn, Field G. Van Zee. Making Programming Synonymous with
Programming for Linear Algebra Libraries. FLAME Working Note #31. The University of Texas at
Austin, Department of Computer Sciences. Technical Report TR-08-20. April 17, 2008.

W32 Gregorio Quintana-Ort́ı, Francisco D. Igual, Enrique S. Quintana-Orti, Robert van de Geijn. Solving
Dense Linear Algebra Problems on Platforms with Multiple Hardware Accelerators. FLAME Working
Note #32. The University of Texas at Austin, Department of Computer Sciences. Technical Report
TR-08-22. May 9, 2008.

W33 Paolo Bientinesi and Robert A. van de Geijn. ”The Science of Deriving Stability Analyses.” FLAME
Working Note #33. Aachen Institute for Computational Engineering Sciences, RWTH Aachen. TR
AICES-2008-2. November 2008.

W34 Robert van de Geijn. ”Beautiful Parallel Code: Evolution vs. Intelligent Design.” Presented at
Supercomputing 2008 Workshop on Node Level Parallelism for Large Scale Supercomputers, Austin,
Texas, November 2008. FLAME Working Note #34. The University of Texas at Austin, Department
of Computer Sciences. Technical Report TR-08-46. Nov. 21, 2008.

W35 Richard Veras, Jonathan Monette, Enrique Quintana-Ort́ı, and Robert van de Geijn. ”FLAMES2S:
From Abstraction to High Performance.” FLAME Working Note #35. The University of Texas at
Austin, Department of Computer Sciences. Technical Report TR-08-49. Dec. 14, 2008.

W36 Mercedes Marqués, Gregorio Quintana-Ort́ı, Enrique S. Quintana-Ort́ı, and Robert van de Geijn.
”Solving “Large” Dense Matrix Problems on Multi-Core Processors and GPUs” FLAME Working
Note #36. Universidad Jaume I, Depto. de Ingenieria y Ciencia de Computadores. Technical Report
ICC 01-01-2009. Jan. 7, 2009.

W37 Francisco D. Igual, Gregorio Quintana-Ort́ı, and Robert van de Geijn. ”Level-3 BLAS on a GPU:
Picking the Low Hanging Fruit ” FLAME Working Note #37. Universidad Jaume I, Depto. de

A.6. Other Technical Reports 265

Ingenieria y Ciencia de Computadores. Technical Report DICC 2009-04-01. April 30, 2009, Updated
May 21, 2009.

W38 Ernie Chan, Jim Nagle, Robert van de Geijn, and Field G. Van Zee. ”Transforming Linear Algebra
Libraries: From Abstraction to Parallelism.” FLAME Working Note #38. The University of Texas at
Austin, Department of Computer Sciences. Technical Report TR-09-17. May 27, 2009.

W39 Ernie Chan. ”Runtime Data Flow Scheduling of Matrix Computations.” FLAME Working Note #39.
The University of Texas at Austin, Department of Computer Sciences. Technical Report TR-09-22.
August 10, 2009.

A.6 Other Technical Reports

R1 Rosa M. Badia, Jose R. Herrero, Jesus Labarta, Josep M. Perez, Enrique S. Quintana-Ort́ı and Gregorio
Quintana-Orti. Parallelizing dense and banded linear algebra libraries using SMPSs. Departament of
Computer Architecture, Universitat Politecnica de Catalunya. Technical Report UPC-DAC-RR-2008-
64. 2008.

R2 Paolo Bientinesi and Robert van de Geijn. Automation in Dense Linear Algebra. Aachen Institute for
Computational Engineering Science, RWTH Aachen. Technical Report AICES-2008-2. October 2008.

266 A. FLAME Project Related Publications

Appendix B

License

B.1
BSD 3-CLAUSE LICENSE

libflame is available as free software under the following “3-clause” (also known as “new” or “modified”)
BSD license.

Copyright c© 2014, The University of Texas at Austin

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of The University of Texas at Austin nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUEN-
TIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

267

	Introduction
	What's provided
	What's not provided
	Acknowledgments

	Setup for GNU/Linux and UNIX
	Before obtaining libflame
	System software requirements
	System hardware support
	License
	Source code
	Tracking source code revisions
	If you have problems

	Preparation
	Configuration
	configure options
	Running configure

	Compiling
	Parallel make

	Installation
	Linking against libflame
	Linking with the lapack2flame compatibility layer

	Setup for Microsoft Windows
	Before obtaining libflame
	System software requirements
	System hardware support
	License
	Source code
	Tracking source code revisions
	If you have problems

	Preparation
	Configuration
	IronPython
	Running configure.cmd

	Compiling
	Installation
	Dynamic library generation
	Linking against libflame

	Using libflame
	FLAME/C examples
	FLASH examples
	SuperMatrix examples

	User-level Application Programming Interfaces
	Conventions
	General terms
	Notation
	Objects

	FLAME/C Basics
	Initialization and finalization
	Object creation and destruction
	General query functions
	Interfacing with conventional matrix arrays
	More query functions
	Assignment/Update functions
	Math-related functions
	Miscellaneous functions
	Advanced query routines

	Managing Views
	Vertical partitioning
	Horizontal partitioning
	Bidirectional partitioning
	Merging views

	FLASH
	Motivation
	Concepts
	Interoperability with FLAME/C
	Object creation and destruction
	Interfacing with flat matrix objects
	Interfacing with conventional matrix arrays
	Object query functions
	Managing Views
	Vertical partitioning
	Horizontal partitioning
	Bidirectional partitioning

	Utility functions
	Miscellaneous functions

	SuperMatrix
	Overview
	API
	Integration with FLASH front-ends

	Front-ends
	BLAS operations
	Level-1 BLAS
	Level-2 BLAS
	Level-3 BLAS

	LAPACK operations
	Utility functions

	External wrappers
	BLAS operations
	Level-1 BLAS
	Level-2 BLAS
	Level-3 BLAS

	LAPACK operations
	LAPACK-related utility functions

	LAPACK compatibility (lapack2flame)
	Supported routines

	FLAME Project Related Publications
	Books
	Dissertations
	Journal Articles
	Conference Papers
	FLAME Working Notes
	Other Technical Reports

	License
	BSD 3-clause license

